<u>Ouantitative molecular imaging of atherosclerotic endothelial dysfunction with perfluorocarbon (19F) nanoparticle magnetic</u> resonance imaging and spectroscopy

L. Zhang¹, H. Zhang¹, K. Bibee¹, S. Allen¹, J. Chen¹, G. M. Lanza¹, and S. A. Wickline¹ ¹Washington University School of Medicine, St. Louis, MO, United States

Introduction: Heart attack and stroke account for the great majority of deaths worldwide, and most occur without premonitory warning signs or symptoms. Disturbed endothelial barrier function in atherosclerosis has been detected by MRI by imaging gadolinium leakage into the vascular interstitium but not yet quantified. Alternatively, we propose that the unique, no background ¹⁹F signal from crown ether perfluorocarbon-core nanoparticles (NP: ~250 nm) might both visualize *and* quantify endothelial disruption in advanced atherosclerosis.

Materials and Methods: Five NZW rabbits were fed a high fat diet for 9-12 months (cholesterol: 1200-1700 mg/dL).

Fluorescently-labeled, nontargeted NP were injected (2 ml/kg) intravenously into rabbit ear vein. After circulation *in vivo* for 1, 6 or 24 hours, aortas were excised for ¹⁹F MRI and spectroscopy (Varian 11.7 T scanner); and whole mount fluorescence imaging (Xenogen IVIS system). Two human carotid endarterectomy tissues were collected from operation room. After pretreatment with plasmin to digest fibrin on the endothelial surface and incubation with nontargeted NP for 6 hours, tissues were rinsed and formalin fixed for ¹⁹F MRI and spectroscopy. A 1cm single turn solenoid coil was used for both ¹⁹F MR spectroscopy and ¹H / ¹⁹F MR imaging. A multi-slice spin-echo sequence was used for ¹⁹F imaging for both rabbit aorta and human plaque tissues. Imaging parameters were: TR, 1s; TE, 14ms; resolution: 1*1*1 mm³; imaging time: 4.5hour. After scanning, ¹⁹F MR images were coregistered with ¹H images using MATLAB software to show the locations of the NP. An internal perfluorooctyl bromide standard was used in ¹⁹F spectroscopy to quantify tissue bound NP numbers and concentrations in each imaged voxel.

<u>Results</u>: In rabbit aortas, MRI (¹⁹F/¹H overlay) revealed abundant ¹⁹F signal from intact NP that were localized heterogeneously in the plaque interstitium (Fig.1A) but not in unaffected areas. The average tissue concentration of NP calculated from MR spectroscopy (Fig.1B) was $2.36 \pm 0.42 \times 10^9$ /g aorta. The accumulation of NP is distinct from macrophage uptake, as demonstrated by high resolution fluorescence microscopy (Fig.1C). Fluorescence imaging (Fig.1D) also confirmed the presence of NP. In human carotid arterectomy tissues, the detected ¹⁹F signals were primary located on the endothelial/luminal side (Fig.2). Quantitative MRS-based analysis showed that average NP concentration in carotid arterectomy tissue was $47.1 \pm 18.3 \times 10^9$ /g tissue.

<u>Conclusions</u>: For both advanced experimental atherosclerosis and native human atherosclerosis tissues, nontargeted NP rapidly penetrate the leaky endothelial barrier, which can be visualized and quantified *ex vivo* with the use of "no background" ¹⁹F MRI and MRS. This experimental strategy offers a potential new approach for quantification of endothelial dysfunction employing both *in vivo* and *ex vivo* incubation with nanoparticle tracers.

Figure 1. Rabbit aortic atherosclerotic tissue ¹⁹F and ¹H MRI coregistered image (A), MRS (B), fluorescence microscopy (C) and whole-mount IVIS fluorescence image (D). The number of NP in each voxel in color bar in (A) was calculated based on MRS quantifications shown in (B).

Figure 2. Human carotid endarterectomy tissue photo (A), ¹H and ¹⁹F MR image (B,C) and ¹H, ¹⁹F co-registered image (D). Number of NP in each voxel was calculated based on MRS quantifications and ¹⁹F MR images were color coded. Color bar shows the number of NP in each imaging voxel.