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Introduction 
Bolus tracking perfusion evaluation relies on the deconvolution of the tracer concentration time-courses in an arterial and a tissue voxel following 
the tracer kinetic model: c(t)=f R(t) ⊗ a(t), where c(t) is the concentration in tissue, f the cerebral blood flow (CBF), R(t) the residue function and 
a(t) the arterial input function (AIF). The deconvolution is most commonly performed using Fourier or circular singular value decomposition 
(oSVD). Being an ill posed problem deconvolution relies on regularization. The two methods are mathematically equivalent, and a transformation of 
the regularization filters between them is defined. It has been shown that a regularization threshold for oSVD has to be adaptive to the properties of 
the input data such as noise [1, 2]. In this work we employ Tikhonov regularization in the Fourier domain to design a data driven, smooth filter that 
only depends on one parameter λ. The dependence of the optimal regularization parameter λopt on the contrast to noise ratio (CNR) of the arterial 
input function (CNRa), the CNR of the tissue concentration (CNRt) and the first moment difference (Δm1) of the two time courses is found using 
simulations. The resulting filter is applied to simulated and measured bolus tracking perfusion data and compared to oSVD deconvolution with a 
constant threshold. Exploiting the equivalence of the Fourier and oSVD approach, the filter is transformed and compared to the corresponding oSVD 
thresholds. 
Methods 
CNR Definition. In this work CNR was defined to be the ratio of the average amplitude of the relaxation time-course during the first bolus passage 
[3] and the noise amplitude during the relaxation time-course baseline. The integral character of those measures ensures the numerical stability of the 
CNR computation. 
Filter Design. A Tikhonov filter that penalizes oscillations in Fourier domain takes the form H = 1/(1+λ2*w4/(abs(a(w))2)). λopt was defined using an 
optimum criterion minimizing the sum of squares of the systematic error introduced by the filter itself and statistical error still present after filtering. 
Simulations. In order to find the dependence of λopt on CNRa, CNRt and Δm1 1024 noise realizations for each given point in the parameter space 
were calculated. White Gaussian noise was added to the signals and CNR computed from the noisy relaxation time-courses. The signals were 
modeled to be s(t)=s0*exp(-ΔR(t)*TE). For the arterial signal ΔR(t) was modeled using the gamma variate function [4] with α=3.0 and β=1.5. The 
time interval covered by the simulations was 100s and TR 1.5s. The tissue signal was found by convolution of the corresponding relaxation time-
course with an exponential residue function at varying CBF between 10 and 90 ml/100g/min and a constant blood volume fraction of 0.04. Using 
this data a hyperplane τ1⋅CNRa + τ1⋅CNRt + τ3⋅Δm1 + ln(λ) + τ4 = 0 was fitted. 
MRI Measurement. A dataset from a young and healthy volunteer was reexamined (approved by the local ethics committee). The measurement was 
performed on a 3 T clinical scanner (TRIO, Siemens, Erlangen, Germany). Images were acquired with a single-shot gradient echo - spin echo 
sequence with two echo planar readouts with the echo times TEGE = 25ms and TESE = 85ms, TR = 1800ms, matrix size 88 x 88, 16 slices (slice 
thickness 4mm at 25% interslice gap, pixel size 4 x 4mm2), 50 frames. Gd-DTPA (Multihance) at a dose of 0.2ml per kg body weight was 
automatically injected (5ml/s) followed by a 20ml saline flush. The contrast injection was started with 10s delay. 
Results 
From the simulations the parameters of the hyperplane are found to be: τ1 = -0.04, τ2 = 0.03, τ3 = -0.55 and τ4 = 8.50. The proposed method shows a 
smaller flow underestimation especially at high flows compared to the values of oSVD using a fixed threshold of 0.03 (Fig. 1). At the same time the 
uncertainty of these values is increased due to the stronger consideration of the introduced statistical error (Fig. 1). Exploiting the equivalence of 
Fourier and oSVD the Tikhonov parameters of the measured data set translate to thresholds in oSVD yielding an expectation value of 0.08 +/-0.05 
(Fig. 2), which agrees well with the values between 0.03 and 0.1 in [1]. An example of the normalized FFT-spectrum from one voxel and the filter is 
shown in Fig. 3. 
Discussion 
The proposed method is a comprehensive approach for the design of data-driven filters that can be easily adapted to specific needs. The choice of the 
optimization criterion used in this work show an improvement in the systematic error of the estimated flow as compared to oSVD at a constant 
threshold. The parameters for the λopt can be robustly computed from the input data. Application to measured data is in good agreement with [1], 
furthermore the presented approach provides a deeper insight in the filters action and is simple to implement.  

  
Fig 1: CBF computed by the oSVD approach (light 
gray) and by the proposed approach (dark gray) 
versus the true CBF used in the simulation. The 
error bars mark one standard deviation around the 
mean. The black dotted line marks the identity. 

Fig. 2: Optimal oSVD threshold 
distribution derived using λopt. 

Fig. 3: Example of normalized FFT-spectra of 
the AIF (red) and the tissue (green). The 
optimized filter is plotted in blue. The 
corresponding oSVD threshold is represented 
by the black dashed line. 
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