
Fig. 1 DW-ASL ∆M images from one subject: (A) 
τd = 0.8s, b = 0 s/mm2, (B) τd = 0.8s, b = 10 s/mm2, 
(C) τd = 1.5s, b = 0 s/mm2, (D) τd = 1.5s, b = 50 
s/mm2. 4 of 8 slices are shown.
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Introduction Changes in the exchange rate of water across the blood-brain barrier (BBB), denoted kw, may indicate BBB 
dysfunction before the leakage of larger molecules, such as contrast agents, is observable. One approach for measuring kw is to 
combine diffusion-weighted (DW) imaging with arterial spin labelling (ASL) to measure the vascular and tissue fractions of 
labelled water (1,2). kw is determined from the vascular-to-tissue ratio by characterizing the exchange between the two pools (3). 
However, the accuracy of DW-ASL is affected by arterial blood contributions and the arterial transit time (τa) (2,4). To address 
these issues, we propose a two-stage method using combinations of flow-encoding gradients and post-labelling delays (τd) to 
measure τa and kw. First, τa is determined using bipolar gradients to suppress flow in the feeding arteries with a relatively short τd 
(5). Second, kw is determined using bipolar gradients strong enough to suppress all vascular signals and τd > τa. The aims of this 
study were to assess the feasibility of this two-stage method and to determine the reproducibility of the kw measurements.   

 
Materials and Methods Experiments were conducted on a Siemens 
3.0T Verio scanner using a product 32-channel head array coil. The 
DW-ASL sequence incorporated pseudo-continuous ASL (pCASL), 
background suppression (BS) and twice-refocused spin-echo 
diffusion weighting (6) (Fig. 1). The pCASL labelling/control 
duration was 1.5s, consisting of 1600 Hanning pulses (peak/average 
B1=5.3/1.8µT, duration=500µsec and peak/average G=6.0/2.3mT/m). 
Acquisition parameters were FOV=24cm, matrix=64x64, bandwidth 
=3kHz/pixel, 7/8 partial k-space, acceleration factor = 2, TR=3.5sec, 
TE=48ms. 8 axial slices (8 mm thickness, 2 mm gap) were acquired. 

Three sets of DW-ASL data were collected, each with two b values (total scan time = 22 min). For the 1st set, b = 0 and 10 
s/mm2 and τd was 800ms to allow time for labelled water to reach the arterial compartment. For the 2nd and 3rd sets, b = 0 and 50 
s/mm2 – the latter value will suppress all flowing spins (4) – and τd was 1500ms to ensure labelled water reached the tissue 
compartment (i.e., capillaries and surrounding tissue). EPI images were pair-wise subtracted and time averaged to generate mean 
ASL images (∆M) for each b value (32 reps / b value), from which grey matter ∆M was extracted. τa was determined from the ratio 
∆M(b=10)/∆M(b=0) using a two compartment model (arterial + tissue) (5). kw was determined from the ratio ∆M(b=50)/∆M(b=0) 
using an exchange model that accounts for τd and τa. kw was determined for each set separately to assess reproducibility. 

 
Results Figure 1 shows DW-ASL images from one subject. In this example, 
∆M(b=10)/∆M(b=0) = 0.60 and ∆M(b=50)/∆M(b=0) = 0.78. Individual grey matter 
τa and kw estimates from all 4 healthy subjects (mean age 27 y, 22 – 35 y) are 
presented in Table 1. Mean values across subjects were τa = 1.26 ± .09 s and kw = 
119 ± 23 min-1 with an average intra-subject coefficient of variation (CV) of 12%.  

 
Discussion The τa values agreed with previous measurements using this technique 
(5); however, kw was approximately 35% lower in this study (2,4). This difference 
likely reflects an overestimation in the previous studies due to arterial blood 
contamination, which was avoided here by measuring τa and setting τd > τa. Since 
kw is defined as the permeability-surface area (PS) product of water / 
microvasculature blood volume, it can be compared to PET measurements. In 
cortical grey matter, PS = 150 ml/100g/min (7), which is in good agreement with 
our results assuming a microvasculature blood volume of 1.5 ml/100g (8). A mean 
CV of 12% suggests that DW-ASL can measure kw with reasonable precision, in 
contrast to the multi-τd approach (9). Since τa can vary between vascular territories, 
the next step is to determine if there are regional variations in water exchange rates. 
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Fig. 1 Sequence diagram combining pCASL, BS and TRSE methods. 
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Subject τa (s) kw (min-1) CV (%) 

1 1.39 90 11 
2 1.26 137 6 
3 1.20 139 16 
4 1.20 112 15 

Table 1: Arterial transit time (τa) and water 
exchange rate (kw) measurements from 4 subjects. 
Values of the coefficient of variation (CV) are from 
two kw measurements obtained per subject. 
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