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Introduction 
Current state of the art methods for tractography typically 
operate by propagating a track based on the local fibre 
orientation information at any given point, independently of 
any other generated tracks.  Such methods do not make use 
of additional information that might be available from fitting 
all tracts concurrently, which would allow the probability of 
one tract to be affected by the presence of another. Recent 
studies have used this type of information to improve the 
estimate of the local fibre configuration.  King et al. [1] used 
a Bayesian random effects modelling approach to improve 
fibre orientation estimates in areas of complex tract 
crossings, based on the estimates of adjoining voxels.  In 
contrast, Savadjiev et al. [2] used helical curve 
approximations to decide between, single fibre, crossing, 
fanning or bending models in each imaging voxel. In this 
study we introduce a richer local fibre configuration model, 
which represents multiple tract segments explicitly by 3D 
curves with associated volumes.  The resulting local 
neighbourhood representations incorporate not only fibre 
orientation estimates but also estimates of the tract segment 
curvature and sub-voxel positioning.  
Methods 
We define our problem in terms of the Bayesian framework 
and seek to represent the posterior distribution of the 
complete neighbourhood tract configuration via samples 
generated from a Markov-chain Monte-Carlo (MCMC) 
method.  In our representation, each tract is modelled by a 3D 
curve ‘backbone’ and a grid of perturbations about this 
backbone over two axes.  The perturbation axes define the 
volume the tract, and also allow the tract width to widen, 
flatten and fan. The tract backbones and perturbations are 
parameterised by second order 3D Fourier Descriptors (FD) 
[3] and a prior distribution is imposed on their curvature and 
the magnitude of the perturbations.  The endpoints of the 
backbones are constrained to lie on the smallest sphere that 
encloses the local neighbourhood (3x3x3 in this study) to 
ensure that the tract segments do not terminate within the 
modelled white matter structure. Each neighbourhood is 
populated with more tracts than are required, with the excess 
tracts allowed to move close to the sphere surface where they will have little or no contribution to the estimated signal. 
The expected DW intensities are generated from sample points taken at fixed intervals along each backbone and their associated perturbations. The orientation of 
the path at these points is convolved with an axially symmetric response function [4], to give the corresponding signals in each of the DW orientations.  The 
signals are then trilinearly interpolated to the centres of the surrounding voxels.  The noise distribution about each of the expected voxel intensities is assumed to 
be Gaussian. The (un-normalised) posterior probability of the tract configuration, given the image data, is then computed via Bayes' rule.   
Samples are drawn from the posterior distribution using the Metropolis-Hastings MCMC algorithm. The tracts were initialised as straight paths from randomly 
chosen points on the sphere surface [5]. 100 samples were taken from the posterior, sampling every 10,000 iterations after a burn-in period of 100,000 iterations.  
The algorithm was tested on simulated tract configurations (Figure 1) created using 36 fibre paths, organised in alternating layers half a voxel thick. The signal 
response function is calculated assuming a diffusion tensor model (FA = 0.8 and ADC 5x10-4mm2/s), simulated at b=3000s/mm2. The DW datasets were simulated 
in 60 uniformly distributed directions, with Gaussian noise corresponding to an SNR of 15.   
Results 
As shown in Figure 1, the samples from the posterior show good correspondence with the test structures.  The algorithm is able to distinguish between tract 
curvature, crossing, and branching. The algorithm also recovers the correct relative position of the layers, i.e. yellow above blue (Figure 1, right).  
Discussion 
A new algorithm that uses a rich local neighbourhood model of tract segments was introduced, which models the uncertainty of the data in a Bayesian framework. 
Each sample of the posterior distribution contains an estimate of the complete local neighbourhood configuration.  Since all tract segments are taken into 
consideration simultaneously, each tract segment will only be probable if it is consistent with all other segments in the local neighbourhood. Once the local 
configuration is obtained, the information provided is relevant for the centre voxel of the modelled local neighbourhood; for applications such as fibre-tracking, 
this analysis would then be repeated for every voxel and the tracking performed over this improved representation of the tract configurations. While King et al. [1] 
and Savadjiev et al [2] use the local neighbourhood to inform the fibre configurations estimates in each voxel, the tract representations they use discard 
neighbourhood information concerning volume and sub-voxel positioning that could be used to better inform tracking algorithms.  The novel tract segment model 
presented in this study is flexible enough to represent a wide range of tract configurations, while still retaining a low number of parameters, 25 per tract segment. 
It is anticipated that the resulting local estimates will help resolve regions of complex crossing fibres, better characterise curving tracts, and reduce noise 
accumulation present in streamlines. This information is expected to lead to improved tracking-tracking algorithms. 
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Figure 1: Left: Test structures consisting of six layered alternating fibre paths. Right: Samples 
from the posterior distribution of tract-segment parameters, given the DW-MR images 
simulated from the test structures. Each modelled tract segment in the posterior samples is 
displayed by interpolating 9x9 perturbations. Images were simulated with SNR 15 in 60 
directions. Top: Crossing between straight and curving fibre paths.  Bottom: Branching Y-fibre 
structure.  In all cases the grid indicates the 3x3x3 voxel neighbourhood.  
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