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Introduction:  
In 2003 Ozarslan et al introduced Generalised DTI, and showed how the data from a diffusion MRI experiment can be described 
by a higher rank tensor [1]. In 2005 the same authors proposed two generalised anisotropy metrics that can be calculated from any 
n-rank tensor [2]. The normalisation of these metrics is achieved by using a scaling function, with parameters that can be changed 
to modify the contrast of the anisotropy maps. In this work we show how spectral decomposition [3] of the 4-rank generalised 
diffusion tensor can be used to characterise brain structure, including the definition of two metrics of anisotropy that do not 
depend on the arbitrary choice of a normalising function and its parameters. 
Theory:  
Any 3D rank-4 tensor, D, such that Dijmn=Dmnij, Dijmn=Djimn, and Dijmn=Dijnm can be mapped into a 6D rank-2 tensor, S, represented 
by a 6x6 symmetric matrix [3]. The rank-4 generalised diffusion tensor [1], D, is a totally symmetric tensor, and therefore satisfies 
the required symmetry properties. This correspondence between the 4-rank tensor and the 6x6 matrix can be used to calculate the 
six eigenvalues (σ1>σ2>σ3>σ4>σ5>σ6) of the generalised diffusion tensor. The six eigenvalues for a 4-rank tensor corresponding 
to isotropic diffusion can be calculated analytically and are given by: σ1=5<D>/3, σ2=σ3=σ4=σ5=σ6=2<D>/3, where <D> is the 
mean diffusivity; the six eigenvalues corresponding to unidirectional diffusion are given by: 2/)113(1 ><+= Dσ  , 
σ2=σ3=<D>, σ4=σ5=0, 2/)113(6 ><−= Dσ . This eigenvalue decomposition of the 4-rank tensor can be used to define 
generalised fractional anisotropy (GFA) and generalised relative anisotropy (GRA):  
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Finally, the 3x3 eigentensors of the 4-rank generalised diffusion tensor can be used to 
construct “eigensurfaces” representing the projection P of D along any direction 
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eigevenvectors of each of the six 3x3 eigentensors. 
Methods:  
Brain scans were obtained for a healthy volunteer using a Siemens 3T Trio imaging 
system. Diffusion weighted images were acquired along 145 unique sampling directions 
(b-value=2000 s/mm2, NEX=4), as well as nine b=0 images. The data was fitted to the 
generalised 4-rank diffusion tensor model and, after spectral decomposition, brain maps 
were obtained for the six eigenvalues, the mean eigenvalue <σ>, GFA and GRA. The 
eigensurfaces given by P(r) were also computed for each voxel.  
Results:  
Figure 1 shows the images obtained for the six eigenvalues, <σ>, GFA and GRA. The 
eigenvalues have dimensions of diffusivity (mm2/s), and <σ> shows a contrast similar to 
the one seen in mean diffusivity maps. Figure 2 shows the eigenvalue distribution across 
different regions of interest in the brain. For regions well characterised by one fibre 
population (such as the corpus callosum or the internal capsule) there is a significant 
difference between all eigenvalues, while for more isotropic regions (e.g., grey matter) 
the five smallest eigenvalues are very close to each other. Both GFA and GRA show a 
contrast between white and grey matter similar to what is obtained with other anisotropy 
metrics (e.g., fractional anisotropy). Figure 3 shows the eigensurfaces obtained for 
voxels in two different brain areas. For regions well characterised by one fibre 
populations the eigensurfaces have the shape of a peanut, while for regions of crossing 
fibres these eigensurfaces begin to exhibit a four-leaf type pattern. 
Conclusion: The distribution of the six eigenvalues of the 4-rank diffusion tensor can be 
used to characterise different types of brain tissue. Two new metrics of anisotropy were 
also presented. Future work will investigate how the six eigenvalues, GFA and GRA 
may change in the presence of different pathologies.  
References: [1] MRM 50: 955-965, 2003. [2] MRM 53: 866-876, 2005. [3] Signal 
Processing 87: 220-236, 2007. 
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Figure 1 – Brain maps for the six eigenvalues, <σ>,  
GFA and GRA. 
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Figure 2 – Eigenvalue distribution in different brain regions. 
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   Figure 3 – Eigensurfaces for  voxels in: A. the corpus    
    callosum and B. intersection of radiations from  the  
    corpus callosum with the anterior part of the corona 
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