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Introduction 
Adiabatic pulses provide an efficient way to perform broadband and homogeneous magnetization flip, even with strong B1 
inhomogeneities [1]. This property has for example been exploited to perform spectroscopic volume selection, such as in the 
LASER sequence [2], or slice selective imaging sequence [3]. However, when applied in conjunction with a slice selective 
gradient, an adiabatic pulse generates a non-linear phase throughout the selected slice along the direction of the gradient. This is 
due to the frequency-modulated nature of adiabatic pulses, where the magnetization is flipped when the frequency of the pulse is 
equal to the Larmor frequency Ω. Two components can be identified in this non-linear phase: the phase acquired in the slice 
selection gradient, depending on the gradient strength and on the instant of the flip tΩ, and the phase induced by the B1 field 
orientation itself, depending on the B1 phase at the instant of the flip (Fig. 1). This phase dispersion can then be refocused by a 
second, identical slice selective pulse. It has been recognized that the phase dispersion induced by an adiabatic pulse might induce 
diffusion weighting. In their pioneer work [4], Sun and Bartha proposed an expression for diffusion-weighting induced by trains of 
hyperbolic secant pulses, assuming a quadratic phase dispersion (such as induced by a CHIRP pulse), and omitting the contribution 
of the B1 phase variations. In the present work, we propose to revisit the origins of the non-linear phase dispersion induced by 
frequency-swept pulses in order to assess whether the phase variation of the B1 field during the sweep should be explicitly 
considered when calculating diffusion-weighting. An analytical expression is then derived for diffusion-weighting induced by a 
pair of slice selective hyperbolic secant pulses. This expression is validated by numerical simulation of the Bloch equations 
including diffusion. 
Theory 
Non-linear phase seen as a locally linear phase: In the following we will use the usual definition of k(t) as a B0 gradient momentum. Using this notation, the phase 
induced by a gradient is Ф(x,t)=k(t)·x. Let’s now consider a frequency-swept pulse inducing a non-linear phase Ф(x) at the instant tΩ where spins of Larmor frequency 
Ω=γ·Gslice·x are flipped. The phase gradient ∂Ф/∂x can be considered linear over the distance experienced by diffusing spins during the sequence, and the effect of 
diffusion will be to scramble phase and induce signal loss, exactly as induced by a B0 gradient. This formal analogy between a B0 gradient momentum k and a phase 
gradient ∂Ф/∂x can be taken advantage of for the evaluation of the effect of the B1 field phase for an arbitrary frequency-swept pulse, as performed below. 
The phase acquired during a frequency-swept pulse: During the pulse of duration Tp, assuming the slice selection gradient is turned on only during the pulse, the phase 
evolution for magnetization having Larmor frequency Ω=γ·Gslice·x and flipped at tΩ is given by [5,6], ФB1 being the phase of the B1 field: 
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The phase gradient evolution during the pulse is then given by: 
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In Eq.[2] two components can be identified: the usual slice gradient momentum kslice (whose sign is changed at tΩ), and a “radiofrequency” term kB1. However, during 
frequency-swept pulses, the magnetization is flipped when the pulse frequency is equal to Ω, which can be written as ∂ФB1/∂t(tΩ) =γ·Gslice·x. Inserting in Eq.[2] yields: 
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In the end, the contribution of the B1 field orientation is cancelled out when calculating the spatial derivative of the non-linear phase, so that only the phase induced by 
the slice selection gradient needs to be considered for diffusion-weighting. 
Diffusion-weighing during a pair of slice selective frequency-swept pulses: Following the previous analysis, diffusion weighting induced during a pair of slice 
selective frequency-swept pulses (excluding potential spoiler gradients) is simply the integral of kslice(t)2, which can be expressed as a function of tΩ. Introducing 
α=2tΩ/Tp-1 (-1<α<1), and Δ the delay between the two pulses, integration of kslice(t)2 yields: 

( )( )( )Δ+−−= 22222 3121 ααγ ppslice TTGb  [4] 

The above equation allows the evaluation of b as a function of the position when α(x) is known. For example in the case of HS1 pulses [3], with THK the thickness of 
the slice and β the cutoff factor of the pulse: 
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Methods 
Numerical simulation of the Bloch equations was performed, using home-made programs written in Matlab (The Mathworks, Natick, MA, USA), for a pair of slice 
selective hyperbolic secant (HS1) pulses, with the time-bandwidth product R=60, pulse duration TP=1 ms, echo time TE=10 ms (i.e. Δ=5 ms), and THK=1.5 mm. Time-
step for the simulation was 5 µs. Simulation was performed for one million randomly diffusing spins, with diffusion coefficient D=5 µm2/ms. Signal at the end of the 
sequence was then evaluated over 500 pixels spanning the slice thickness, by averaging the transverse magnetization over each pixel. Simulation was compared to the 
theoretical diffusion-weighted signal obtained when combining Eq.[4] and Eq.[5]. 
Results and discussion 
The simulated signal attenuation along the direction of the slice selective gradient is shown in Fig. 2 
(over 90% of slice thickness to exclude the transition bands). Simulation agrees very well with the 
theoretical attenuation, demonstrating the validity of Eq.[3] and subsequent equations. This confirms 
that the phase dispersion induced by the phase variation of the B1 field during the frequency sweep 
vanishes when considering the effect of this phase on diffusion-weighting, as predicted when 
calculating the phase gradient of the magnetization. In conclusion, only the phase dispersion induced by 
the slice selection gradient contributes to diffusion-weighting, which provides a convenient framework 
for b-values calculations. The only specific effect of frequency-swept pulses on diffusion-weighting 
arises from the (spatially dependent) instant tΩ when the spins are flipped. 
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Fig.1: Evolution of the 
transverse magnetization M 
at the instant of the flip tΩ 
during a frequency-swept 
pulse. 

Fig.2: Comparison between simulated and predicted
signal loss after a pair of slice selective HS1 pulses, as a
function of the position x along the thickness of the slice.
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