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Introduction 
Huntington's disease (HD) is a highly debilitating and often fatal neurodegenerative genetic disorder characterized by disrupted motor function as well as 
cognitive and psychiatric deterioration, typically manifesting by mid-life. Wide-spread cortical thinning and striatal volume reduction have been robustly 
observed in HD, tentatively linked to mitochondrial oxidative stress [1], a potential cause of which is disruption of cerebral blood flow (CBF) [2,3]. Perfusion 
studies in HD have predominantly been performed using single-photon emission computed tomography (SPECT) [3,4]. These studies have demonstrated CBF 
changes in the basal ganglia as well as the cingulate and parietal lobes. However, the results to date have been varied in their reproducibility and spatial 
specificity. In particular, SPECT suffers from low spatial-resolution, thus limited sensitivity to detect regional effects. In this work, we examine, for the first 
time, quantitative changes perfusion changes in HD using pulsed arterial-spin labeling (PASL).  We show this noninvasive technique to be robustly sensitive 
to CBF changes in both cortical and sub-cortical brain regions. 
Methods 
Thirteen middle-aged HD patients (5 men/8 women, age = 50.3±5.5 yrs) and twenty age-matched healthy participants (8 men/12 women, age = 50.0±5.8 yrs) 
were imaged using a Siemens Trio 3 T system. The scans employed 12-channel phased-array head coil reception and body-coil transmission. Two PWI 
datasets were obtained for each subject using FAIR QUIPSS II PASL [5] with ¾ partial Fourier EPI readout, matrix=64x64, #slices=24, voxel size=3.4x3.4x5 
mm3, #frames=104, TI1/TI2/TE/TR = 600 ms/1600 ms/12 ms/4 s. The tag and control labeling thicknesses were 140 mm and 340 mm, respectively, leaving 
100 mm margins at either end of the imaging slab to ensure optimal inversion. The QUIPSS II saturation pulse was applied to a 100 mm slab inferior to the 
imaging region with a 10 mm gap between the adjacent edges of the saturation and imaging slabs. This PASL sequence was used for calibration (TR =10 s) 
for estimating arterial blood magnetization. A 3D anatomical scan (1x1x1 mm3) was acquired using multi-echo MPRAGE [6]. The PWI data were motion- 
and drift-corrected, and the difference images calculated using surround subtraction, compensating for transit delay. These volumes were averaged across time 
and datasets to maximize signal-to-noise, following which absolute CBF (qCBF) maps were obtained based on the Standard Kinetic Model and local tissue-
based calibration, assuming a 95% labeling efficiency, as well as proton density and T2* values described previously [7]. The PWI data were registered to the 
anatomical images using boundary-based registration [8], and subsequently sampled into surface-space at a cortical depth of 50%. All surfaces were registered 
to a surface-atlas using FreeSurfer, and the difference in cortical grey matter qCBF between HD patients and controls was obtained after removing cortical 
thickness effects to determine changes in CBF beyond those due to atrophy (partial-voluming). The statistical tests were performed following surface-wise 
smoothing (FWHM=10mm) and outlier removal, and corrected for multiple comparisons [9]. Cortical and sub-cortical structures were also labeled using 
probabilistic atlas-based tissue segmentation on multi-echo MPRAGE anatomical data [6], and volume-ROIs for qCBF analysis were selected well within 
these 3D labels to minimize partial-volume effects. Volume and mean qCBF differences between patients and controls were assessed using 2-way ANOVA.  
Results 
Significance maps of cortical thickness and qCBF changes are shown with semi-inflated lateral (top) and medial (bottom) surface models in Fig. 1. The 
pattern of cortical thinning, which appears wide spread over the cortical mantle, overlapped with that of qCBF differences in the lateral-occipital, pre- and 
postcentral gyri, but voxel-wise correlation analysis showed no significant covariation between cortical thickness and qCBF. The influence of atrophy on CBF 
was neutralized by regressing out cortical thickness measurements, following which qCBF was found to be most strongly reduced in HD patients in the pre- 
and postcentral, paracentral, lateral-temporal and lateral-occipital areas (Figure 1b). In addition, significant volume reduction was observed across the cortex 

(p=0.05), in the striatum (p=1x10-9), globus pallidum (p=1x10-5), amygdala 
(p=0.002) and hippocampus (p=0.03). Volume-averaged qCBF values are 
summarized in Fig. 2. ANOVA showed significant HD-induced qCBF reduction 
in the cortex (p=0.009), striatum (p=0.0008) and hippocampus (p=0.05), but no 
salient qCBF change in the pallidum, thalamus and amygdala. Also, no 
significant gender-dependence in qCBF was found in any of these structures.  
Conclusion 
There is a substantial change in quantitative CBF in HD. Our observation of 
qCBF reduction in the striatum corresponds well with prior reports of reduced 
CBF [3,4] and glucose metabolism [10] in the region, and the hippocampal 
hypoperfusion is corroborated by structural atrophy, observed here and in prior 
studies [1]. Our observation of hypoperfusion in the sensorimotor regions, which 
has not been reported previously, coincides with cortical thinning patterns as 
well as the characteristic motor dysfunction. However, hypoperfusion in the 
superior-temporal region, which is also being observed for the first time, appears 

to be independent of cortical thinning, suggestive of perfusion deficit preceding structural 
degeneration. The opposite may be true in the pallidum, amygdala and thalamus, in which 
perfusion seems preserved despite atrophy, and which were reported to exhibit enhanced 
metabolism in HD [10]. Finally, we observed no perfusion elevation in any structure in the 
HD group, in contrast with prior SPECT results [3]. The above differences warrant further 
investigation, using PASL techniques with improved sensitivity. These results also set the 
stage for studying perfusion abnormalities in pre-manifest HD-gene carriers, which may 
further clarify HD pathogenesis.  
References 
[1] Rosas HD et al. Ann NY Acad Sci 2008;1147:196-205; [2] Deckle GJ et al. Neurol 
1998;51:1576-83; [3] Deckle AW et al. J Nucl Med; 2000;41:773-80; [4] Harris GJ et al. 
Brain; 1999: 122:1667-78; [5] Wang JJ et al., J Magn Reson Imaging 2002;48:242-54; [6] 
van der Kouwe AJW. et al., NeuroImage 2008;40:559-69; [7] Çavuşoğlu M et al., Magn 
Reson Imaging 2009; 27:1039-45; [8] Greve DN and Fischl B, NeuroImage 2009;48:63-
72. [9] Genovese CR et al., NeuroImage 2002;15: 870-70; [10] Ma Y and Eidelberg D, 
Mol Imaging Biol 2007;9:223-33. 

Figure 1. Reductions in cortical qCBF (left, a) due to Huntington's disease 
remain after the removal of cortical atrophy effects (right, b). 

Figure 2. HD was associated with significant (indicated by 
asterisks) qCBF decrease across the cortex and in the striatum. (HD 
= Huntington's patients, CTL = healthy controls) 
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