
Figure 1: Estimated Mardia’s kurtosis image obtained using 
unconstrained (a) and constrained (b) methods.  (c) Mean 
univariate kurtosis using constrained estimation. 
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Introduction 
Recently, diffusion-weighted imaging techniques have been developed that make the measurement of new diffusion metrics feasible in clinical 

settings.  In particular, we have generalized DTI in order to determine diffusional kurtosis (DK), a quantitative measure of the non-Gaussianity of the 
diffusion process [1-3]. The DK is of interest, for example, as an indicator of the diffusional heterogeneity generated by diffusion barriers, such as 
cell membranes and organelles.  This paper presents an improved method for estimating the DK from a diffusional kurtosis imaging (DKI) dataset.  
In particular, we present a simpler algorithm, than what has been previously described [4], for imposing positive-definiteness on the fourth order 
tensor in our signal attenuation model.  Experimentally, we show this to be an important condition for obtaining high quality parametric maps.  In 
addition, we propose to use Mardia’s multivariate coefficient of kurtosis [5] as a measure of overall diffusional non-Gaussianity, as an alternative to 
the mean univariate kurtosis measure that is currently used in DKI literature [3].  Mardia’s kurtosis is both more straightforward to compute and more 
widely accepted in the statistical literature as an extension of the concept of kurtosis to multivariate distributions.  
Theory 

We employ the standard DKI model for the diffusion-weighted signal [2, 3]: ܵሺࢗሻ ൌ  ܵ଴ exp൫െܾ ∑ ௜௝݃௜ଷ௜,௝ୀଵܦ ݃௝ ൅ ܾ૛ ∑ ௜௝௞௟݃௜݃௝݃௞݃௟ଷ௜,௝,௞,௟ୀଵܭ ൯. (Eq. 1) 
Here D and K are totally symmetric second and fourth order tensors with 6 and 15 unknown parameters, respectively.  For a second order DTI 
model, Koay et al. [6] showed how positive-definiteness of D may be enforced using the Cholesky decomposition for use in non-linear least squares 
estimation.  For a fourth order DTI model [7], Barmpoutis et al. [4] developed a method to enforce positive-definiteness by representing the fourth 
order tensor as ternary quartics and applying the Hilbert’s theorem on ternary quartics along with the Iwasawa parameterization.  In this paper, we 
first note that a fourth order three-dimensional totally symmetric Cartesian tensor such as K may be written in terms of a second order six-
dimensional symmetric tensor with only 15 unique elements.  This observation enables us to use the Cholesky parameterization to impose positivity 
not only on D, but also on K, circumventing the need for using a different and more complicated method for imposing positive-definiteness on K.     

As a measure of non-Gaussianity, we propose to use Mardia’s kurtosis.  Let ࢞ ൌ ሾݔଵ ଶݔ  ଷሿ் be a random vector representing theݔ
displacement of a water molecule over a diffusion time Δ.  For DKI, Mardia’s kurtosis in 3D may be written as: Eሺିࢳ்࢞ଵ࢞ሻଶ െ 15, where ࢳ ൌEሺ்࢞࢞ሻ represents the covariance matrix of ࢞.   Here 15 is subtracted to make the kurtosis for the 3D Gaussian distribution equal to 0.  In addition to 
being the most widely accepted multivariate generalization of kurtosis, an advantage of using Mardia’s kurtosis is that it may be explicitly written in 
terms of the second and fourth order moments of ࢞ without the need for integration, as is required for mean (i.e., directionally averaged) univariate 
DK.  If we consider our attenuation model (Eq. 1) to approximate the Fourier transform (characteristic function in statistical parlance) of the 
probability density function of the displacement, we can show that the moments may be written in terms of D and K as follows:  E൫ݔ௜ݔ௝൯ ൌ ௟൯ݔ௞ݔ௝ݔ௜ݔ௜௝       E൫ܦ2 ൌ ௝௞ܦ௜௟ܦ4 ൅ ௜௞ܦ௝௟ܦ4 ൅ ௜௝ܦ௞௟ܦ4 ൅  ௜௝௞௟. (Eq. 2)ܭ24
Therefore, Mardia’s kurtosis may be written explicitly in terms of the elements of D and K.  It can be shown that positive-definiteness of K implies 
that the univariate excess kurtosis in any given direction is positive.  This is consistent with the compartmental tissue model which predicts positive 
excess kurtosis in any given direction.   
Experiments and Results 

A DKI scan was performed on a healthy volunteer using a 3 T Siemens Trio system with an 8-channel head coil. Diffusion-weighted images 
were acquired along 30 gradient directions with a twice-refocused spin-echo echo-planar imaging sequence (TR = 2300 ms, TE = 109 ms, matrix = 
128 × 128, FOV = 256 × 256 mm², 15 slices, slice thickness = 2 mm, gap = 2 mm, NEX = 6 for b = 0, NEX = 2 for b = 500, 1000, 1500, 2000, 2500 
s/mm²).  The 22 parameters in (Eq. 1) (i.e., D, K, and S0) were estimated for each voxel, initially using an unconstrained weighted linearized least 
squares (WLS) method.  If the initial estimate of D or K were nonpositive-definite, then the constrained weighted non-linear least squares (CWLS) 
approach outlined above was used to enforce positivity.  Of the 58408 voxels in the brain that were processed, in the initial WLS, only 104 voxels 
(0.2%) violated the positivity condition for D, while 6998 voxels (12%) violated the condition for K.  Therefore, the tensor were re-estimated in these 
voxels using CWLS.  Figure 1 shows Mardia’s kurtosis maps obtained without (a) and with (b) imposing positivity.  In 322 voxels (dark voxels in (a) 
inside the brain), Mardia’s kurtosis was estimated to be negative using the unconstrained method.  There were no negative kurtosis estimates by the 
CWLS method.  Panel (c) shows the conventional mean univariate kurtosis map. 
Discussion 

Imposing the positivity constraint on the fourth order tensor is crucial for obtaining high quality parametric maps in DKI.  In the data presented, 
12% of the voxels had nonpositive-definite K, which implies that for some direction(s), the excess kurtosis would be negative.  This is inconsistent 
with the compartmental tissue model of diffusion which predicts a positive kurtosis [2].  Many of these voxels are located in high anisotropy regions 
(e.g., splenium of the corpus callosum).  This problem is alleviated by using the CWLS 
method.  Mardia’s kurtosis map (b) is similar to the mean univariate kurtosis map (c) but 
easier to compute.  It also appears to have a slightly better gray-to-white matter contrast 
as well as contrast within white matter regions. 
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