
 
Fig. 1: Apparent diffusion coefficient in 
dependency of the angle between x-axis and 
diffusion gradient. The ADC is orientation 
dependent for large diffusion weightings only. 
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Tab. 1. ζ constants which are 
of importance for the second 
moment. E.g. ζ3/2  is 
proportional to the surface to 
volume ratio.  
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Box 1.: Symmetric and asymmetric Eigenfunctions of the Laplace operator with the equilateral triangle as confining boundary.  
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Introduction 
Magnetic resonance diffusion weighted imaging finds widespread application, e.g. in medical imaging or porous media research [1] since the 
measured diffusion is linked to the confining geometry. Although this link is not trivial, efficient techniques like the multiple correlation function 
(MCF) approach exist [2], that rely on the Laplace eigensystem, and allow for a more efficient computation of diffusion weighted signals than e.g. 
Monte-Carlo simulations. The main limitation of the MCF approach is the small number of geometries (slab, cylinder, sphere, ring) for which the 
governing matrices could be computed. The equilateral triangle is one of the few other geometries for which the Laplace eigensystem is known and 
could thus serve as an interesting model geometry with discrete rotational symmetry. Thus, the aim of this work was to evaluate the equilateral 
triangle within the MCF approach. 
Methods 
We follow the notation of [3]. Be λnm and unm(r) eigenvalues and eigenfunctions of the Laplace operator satisfying Neumann boundary conditions. 
B(r) is the magntic field of the diffusion gradients. Here we focus on the geometry describing matrices                                               . The eigensystem 
of the equilateral triangle is solved in [4, 5]. For each integer n and m>n an antisymmetric mode ua,nm(r)exists and for each integer n and m>=n a 
symmetric mode us,nm(r) is present. Monte-Carlo random walks were performed to validate the results.    

Results 
While the matrices Bx,aa, Bx,ss and By,as are zero due to symmetry, the remaining matrices are given by the expressions in box 2 and 3. Note that the 
indices of a, c and d were omitted for legibility reasons. The expressions for B are well defined, but direct computation yields divergent terms. This 
may be circumvented by a series expansion around the integer values of n and m. The constants ζ which are important for the second moment (for 
details see [1]) are presented in Tab. 1. The matrices B00,nk that govern the second moment differ for x- and y-direction. However, their square, 
namely B00,nkBnk,00 is identical. Thus, the second moment, which is closely related to the apparent diffusion coefficient, is independent of the gradient 
direction. This is also apparent in Fig. 1: For moderate diffusion weightings (b=1000 s/mm²), the ADC is independent of the orientation. For large b-
values (b=5000 s/mm²), a clear orientation dependency is observable. Monte-Carlo simulations and the MCF results are in good agreement (Fig. 1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Discussion  
Using the expressions of box 3, the B matrices can be computed for 
arbitrary eigenvalues. This task has to be performed only once. The 
MCF simulations can then be performed for arbitrary temporal 
gradient profiles, length scales, diffusion times and free diffusion 
constants. One interesting finding is that the second moment is 
orientation independent. This can be explained by the fact that the 
diffusion tensor of second order has three free parameters in two 
dimensions and fully describes the orientation dependency of the 
second moment.  
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Box 2: Auxiliary variables to make the B matrices more readable.  
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Box 3: B matrices for the equilateral triangle. 
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