IMPLEMENTATION OF THE EQUILATERAL TRIANGLE IN THE MULTIPLE CORRELATION FUNCTION
APPROACH AS MODEL GEOMETRY FOR RESTRICTED DIFFUSION.

F. B. Laun', and B. Stieltjes’
'Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Baden-Wiirttemberg, Germany, Radiology, German Cancer Research Center,
Heidelberg, Baden-Wiirttemberg, Germany

Introduction

Magnetic resonance diffusion weighted imaging finds widespread application, e.g. in medical imaging or porous media research [1] since the
measured diffusion is linked to the confining geometry. Although this link is not trivial, efficient techniques like the multiple correlation function
(MCF) approach exist [2], that rely on the Laplace eigensystem, and allow for a more efficient computation of diffusion weighted signals than e.g.
Monte-Carlo simulations. The main limitation of the MCF approach is the small number of geometries (slab, cylinder, sphere, ring) for which the
governing matrices could be computed. The equilateral triangle is one of the few other geometries for which the Laplace eigensystem is known and
could thus serve as an interesting model geometry with discrete rotational symmetry. Thus, the aim of this work was to evaluate the equilateral
triangle within the MCF approach.

Methods

We follow the notation of [3]. Be A,,, and u,,(r) eigenvalues and eigenfunctions of the Laplace operator satisfying Neumann boundary conditions.
B(r) is the magntic field of the diffusion gradients. Here we focus on the geometry describing matrices B,,, .., = Idr“u:l,,,, (7w, (F)B(F) . The eigensystem
of the equilateral triangle is solved in [4, 5]. For each integer n and m>n an antisymmetric mode u,,,,(r)exists and for each integer n and m>=n a
symmetric mode uy, ,, () is present. Monte-Carlo random walks were performed to validate the results.

u, (%)= B, (005[27[(— k+ n)x/3]cosl2ﬂ'(k + n)y/\/§1+ cos[277(2k + n)x/3]cole7my/\/§J+ cos[27(k +2n)/ 3]c05[27zky/\/§J)
Uy o (x,9)= B, (sin[27z(— k+ n)x/3]cos [Zﬂ(k + n y/\/§J+ sin 27[(2k + n)x/3]cosl27my/\/§l+ sin [27r(k + 2n)/3]cosl27rky / \EJ)
B =(24f4=25, )i \J(1+8,, + Oy — 20,85, N1+ 50,,0,,)) A, = —1672(n> + nk +k2)/9

Box 1.: Symmetric and asymmetric Eigenfunctions of the Laplace operator with the equilateral triangle as confining boundary.

Results

While the matrices B, B** and B”* are zero due to symmetry, the remaining matrices are given by the expressions in box 2 and 3. Note that the
indices of a, ¢ and d were omitted for legibility reasons. The expressions for B are well defined, but direct computation yields divergent terms. This
may be circumvented by a series expansion around the integer values of n and m. The constants { which are important for the second moment (for
details see [1]) are presented in Tab. 1. The matrices By, that govern the second moment differ for x- and y-direction. However, their square,
namely By B 00 1s identical. Thus, the second moment, which is closely related to the apparent diffusion coefficient, is independent of the gradient
direction. This is also apparent in Fig. 1: For moderate diffusion weightings (b=1000 s/mm?), the ADC is independent of the orientation. For large b-
values (b=5000 s/mm?), a clear orientation dependency is observable. Monte-Carlo simulations and the MCF results are in good agreement (Fig. 1).
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Box 2: Auxiliary Varlables to make the B matrlces more readable.  [|Box 3: B matrices for the equilateral triangle.
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dependent for large diffusion weightings only.
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