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Introduction: In the context of diffusion in tissues, one can think of the two broad classes of restrictions to molecular motion: (i)  surface 
restrictions (membranes), and (ii)  diffusivity heterogeneity in the bulk of the tissue. The latter class encompasses variation of diffusion properties on 
a finite length scale, such as diffusivity contrast between cells, or between the intra- and extracellular space, or between clusters of cells of different 
types within a voxel. Any tissue generally possesses both classes of restrictions. To assess their relative contributions and importance, it is useful to 
understand them separately. The case (i) of membrane restrictions has been recently considered [1]. The present work deals with the effect (ii) of the 
heterogeneous diffusivity using the effective-medium framework [2,3]. 
 
Results: Consider any medium with a spatially varying diffusivity. An example is the d=2-dimensional 
model medium consisting of randomly-packed disks (white) with diffusion coefficient, D2 < D1, different 
from that of the extracellular space (black), D1. According to the effective-medium framework [3], we obtain 
the DWI signal in terms of the correlation function Γ(r) = <δD(r)δD(0)> of the varying diffusivity 
component DDD −)(=)( rrδ , where >)(=< rDD  is the voxel-averaged diffusion coefficient. Often times, 
Γ(r) has one well-defined  correlation length lc (or a small number of them). In our example, lc corresponds 
to both the disk size and the typical separation between them; this length defines the wave vector kc=2π/lc at 
which the Fourier transform Γ(k) peaks (see Figures). Using the general formalism [3], we find the 
Lorentzian-shaped frequency-dependent diffusivity for this case   
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Here α << 1 is an expansion parameter characterizing the width of the local diffusivity distribution. The 
dispersive diffusivity (1) is measurable via the oscillating gradient technique [4,5]. It leads to the 
exponentially decaying contribution (non-Markoffian memory) in the velocity autocorrelation function   

 
Dv (t) =< v(t)v(0) >= D δ(t) − α 2/tcd( )e−t/tc[ ], t > 0, (2) 

  
with the correlation time tc. The corresponding time-dependent diffusivity D(t) and kurtosis K(t) read  
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where τ ≡ t/tc,  βd  = 1, 3/8, 1/5 in dimensions d=1,2,3 correspondingly, 2

12 )/1(= τττ +−−eh , and the known 
functions h22 and h32, which are defined in [2], are not included here for brevity. The diffusivity and kurtosis 
agree with their Monte-Carlo simulated values in the model medium fairly well for α<0.5. 
 
Discussion: Our model provides the explicit time dependence for the diffusion coefficient, which is indeed 
empirically known to decrease with time. This can be contrasted with the popular two-compartment 
exchange model (Kärger) [6] with constant diffusivity. Remarkably, the DWI signal up to O(q2) has an 
approximately biexponential form with a somewhat atypical dependence on q:    
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where )/(1=)( 2 dDDD α−∞≡∞

 is the tortuosity asymptote. This form is also qualitatively different from that 
of the Kärger model. Multiple length scales would yield additive dispersive contributions to Eqs. (1)-(4) with the corresponding correlation times. 
This way, by measuring the time- or frequency-dependence of DWI signal characteristics, one can quantify diffusivity variance and length scales. 
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Top to bottom: A portion of 
model medium; correlator Γ(k); 
D(t) and K(t) from Monte Carlo 
simulations (blue), from general 
analytical result with exact Γ(k) 
(solid red) and Eqs.(3,4) (dashed 
magenta). Deviations in K(t) for 
short times is simulation artifact.
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