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Introduction    A number of different models have been proposed in the literature for describing diffusion-weighted data acquired with a range of b-values.  Due to data 
acquisition limitations these models have typically been applied in the brain, but more recent developments have enabled diffusion weighted imaging (DWI) to be 
obtained from other regions of the body, including the abdominal and pelvic organs.  Based on the physiology of these organs a number of models have been suggested 
that link in with known organ physiology, especially in relation to anomalous diffusion, distributions of diffusion rates and perfusion effects.  However, due to the 
complexity of the micro-environment being probed in a diffusion experiment, these links remain uncertain in human systems, and there is even greater uncertainty when 
considering tumours.  There is little work that looks at determining the relative statistical appropriateness of these or other models for application to a given data set.  In 
this abstract we present a Bayesian methodology for estimating the posterior model probability for a given selection of models.  This probability is of interest to indicate 
statistical model uncertainty, and therefore uncertainty in the interpretation of the data.  This methodology also has the potential to provide metrics that are more stable, 
and therefore more sensitive to a wider range of treatment effects than existing methods. 
Signal Models    Four diffusion signal models are considered here, though the statistical framework for model selection given later extends directly to other models. 

M1 : S(b) = S0 exp(– b D)                 M2 : S(b) = S0 exp(–(b D)α)                 M3 : S(b) = S0 ∫ π(D) exp(– b D) dD                M4 : S(b) = S0 ( f exp(– b D*) + (1–f ) exp(– b D) ) 
M1 is derived from a pure diffusion process; M2 is derived from a sub-diffusion process [1]; M3 assumes that the data arises from a population of particles with diffusion 
rates defined by the distribution π(D), a normal distribution truncated below zero [2] with mode Δ and variance σD

2; M4 is a bi-exponential form where the first term 
comes from an intra-voxel incoherent motion (IVIM) model [3], typically associated with a perfusion effect, and the 
second term describes a diffusion effect.   
Bayesian Model Selection    Bayesian methods can be used to derive posterior model probabilities that indicate how 
well each model is supported by the data.  This approach requires the specification of prior distributions for all 
unknown parameters, and likelihood functions describing measurement errors.  An important feature of using 
Bayesian Inference is that more complex models are appropriately penalised relative to simpler models that fit the 
data equally well, given the data SNR.  From each of the above signal models we derive a likelihood function, the 
form of which reflects the measurement noise model – here we use a Gaussian model.  Each model uses a different 
set of parameters:  θ1 = {S0, D} for M1, θ2 = {S0, D, α} for M2, θ3 = {S0, Δ, σD} for M3 and θ4 = {S0, D, D*, f} for M4.  
Prior distributions are needed for all unknown parameters for all models, and these are chosen to reflect known limits 
and plausible values, while being sufficiently dispersed to introduce minimal bias to the posterior parameter 
estimates.  The following distributions and 95% a priori probability intervals are used: Gaussian distribution with 
41.2 < S0 < 158.8 for all models; log-Gaussian distribution with 1.3×10-4 < D < 6.5×10-3 mm2/sec for models 1, 2, 4, 
and also for Δ in model 3; Uniform distribution with 0.025 < α < 0.975 for model 2; Uniform distribution with 
0.125×10-3 < σD < 4.875×10-3 mm2/sec for model 3; Uniform distribution with 0.025 < f  < 0.975 for model 2; 
log-Gaussian distribution with 4.3×10-3 < D* < 0.21 mm2/sec for model 4.  The prior probability for each model is 
also required and is set to ¼ for all models, indicating no prior model preference.  Bayesian Inference combines the 
likelihood and prior distributions to give a posterior probability for each model.  This inference process essentially 
involves averaging the data fit quality of each model over the whole parameter space, which amounts to a multi-
dimensional integral, implemented with a grid-based approach here.  In contrast, non-Bayesian methods typically 
compare the data fit quality of each model for the best fitting parameters only, which leads to less robust results. 
Data Acquisition  Axial diffusion-weighted images were acquired under free-breathing using a 1.5T Siemens Avanto 
with a multi-slice EPI sequence with the following parameters: 20×5mm slices, FOV = 380mm, 1282 matrix with 
6/8 partial acquisition in PE direction, TE = 69ms, TR = 3500ms, NSA = 6, GRAPPA factor = 2, SPAIR fat 
suppression, b-values = 0, 50, 100, 300, 600, 900, 1050 s/mm2, 3 orthogonal directions, 3-scan trace images, 
acquisition time 6 min 51 sec. 
Results & Discussion    Figure 1 shows maps of the posterior model probability calculated from nine slices 
covering a liver metastasis.  This example is typical of tumours we have analysed and indicates a large degree of 
model heterogeneity over the volume, with regions that have a strong preference for each of the four models.  An 
interesting feature of these maps is the spatial smoothness – there are regions that have strong spatial correlations, 
but also edges where the model probability changes more rapidly.  Table 1 shows results from four liver and three 
non-liver example cases where the proportion of voxels preferring each model is reported – the model preference 
for each voxel is the model with the largest posterior probability.  Case 1 is the example in figure 1, and there is no 
obvious relationship between tumour location and model preference.  The average model preferences over all seven cases are M1 = 32.4%, M2 = 17.0%, M3 = 39.9%, M4 
= 10.8%, and as with the example in the figure, all cases have a significant proportion of pixels preferring each of the four models.  It is possible that the estimated 
model preferences reflect underlying differences in the actual diffusion processes over the VOI, but without independent verification this interpretation is over-
optimistic.  This is because the “true” model is almost certainly considerably more complex than is possible to infer from such in-vivo data.  Instead the preferred model 
should be treated as the most parsimonious description of the data chosen from the available models.  Using over-parameterised models typically leads to better data 
fits, but the parameter estimates tend to be noisy due to large correlations between unnecessary parameters.  Using the most parsimonious model is advantageous 
because the model complexity is matched to the data, and hence the parameter estimates tend to be more stable.  The model preferences can be used as a metric 
describing the data, and we are currently investigating this in relation to treatment response of tumours.  All four models have diffusion and amplitude parameters, so it 
is possible to compute model-averaged D and S0 estimates for each voxel that may also be of use detecting treatment response.  Similar metrics are needed for the other 
model parameters, but as these are specific to each model, further work is needed to determine the best method for combining estimates of these parameters with the rest 
of the analysis. 
Conclusions   A Bayesian methodology has been presented for analysing diffusion weighted images acquired with multiple b-values that gives posterior probabilities 
for a collection of signal models.  These probabilities should only be interpreted as indicating the most parsimonious description of the data, and NOT as an indication 
of the true underlying diffusion processes.  Examples have been presented indicating that the preferred model is highly heterogeneous within and between tumours. 
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Figure 1: Nine slices of a liver metastasis, with
head to foot slices arranged from left to right, top
to bottom.  The color indicates the posterior model
probability with black being p(M1 | S1:N) = 1, red
the same for M2, green for M3 and blue for M4.
Blends of colours indicate two or more models
have similar probabilities, and so intense colours
indicate high probability for the given model. 

Table 1 : Percentage of voxels preferring each model.

Case Location M1 M2 M3 M4 
1 Liver 23.5 18.7 42.4 15.4 
2 Pelvis 28.8 27.5 33.3 10.5 
3 Liver 43.8 10.0 39.1 7.09 
4 Liver 26.1 14.1 48.2 11.6 
5 Liver 41.0 6.70 48.2 4.10 
6 Pelvis 40.2 15.6 33.3 10.8 
7 Pelvis 23.2 26.3 34.7 15.8 
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