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Introduction: Quantifying tissue properties is a challenging inverse problem: While the MR signal is acquired over a millimeter-size voxel, the 
relevant physiological information is found on the cell scale of a few μm. The transverse nuclear magnetization ψ(t,r) evolves according to Bloch-
Torrey equation   
 

 [ ] .)()()(=/),( 2 ψψ ⋅Ω−−∇∇∂∂ rrrr iRDtt  (1)  
 
The tissue complexity is embodied in the spatially varying local diffusivity D(r), local relaxation rate R2(r), and susceptibility-induced local Larmor 
frequency offset Ω(r), which follow the intricate geometric structure of cells, intracellular organelles and cell clusters. 

Solving the Bloch-Torrey equation (1) is impractical, as its solution depends on an enormous number of parameters describing the tissue 
structure at a cellular level. Besides, the MR signal from a voxel is effectively averaged over all possible local environments characterized by 
spatially varying D(r), R2(r) and Ω(r). The practical question is, therefore,  What are the geometric tissue features that survive the voxel averaging 
and, hence, can be quantified by MR measurements? 
 
Results: To address this question, we develop an effective-medium (EM) framework which yields the voxel-averaged analog of Eq. (1),   
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The EM approach provides a unified description of the MR signal accounting for both the heterogeneous diffusion and the transverse relaxation, 
bridging the gap between the diffusion and relaxation measurements and methods. 
 The voxel-averaged Bloch-Torrey equation (2) is conveniently written in the frequency and wave number representation 
ψ(ω,q) = ∫dtdreiωt − iqrψ(t,r). Working in the frequency domain is natural since the geometric structure is time-independent, while transforming to the 
q-space is justified since, after voxel-averaging, only the relative molecular displacements remain relevant (translation-invariance implied in DWI). 

The voxel-averaged diffusivity >)(=< rDD , relaxation rate >)(=< 22 rRR , and Larmor frequency offset >)(=< rΩΩ  enter Eq. (2) in an 
expected way. Keeping only these terms would correspond to the Bloch-Torrey equation in a uniform system. 

All the measurable information about tissue heterogeneity is contained in the so-called self-energy part Σ(ω,q) (the name historically comes 
from high-energy and condensed-matter physics, as this quantity modifies the energy-momentum relation ω(q) due to interaction with environment). 
This is the main object of the EM approach. This quantity is related to the correlation functions of the locally varying characteristics D(r), R2(r) and 
Ω(r). For small deviations δD(r), δR2(r) and δΩ(r) from their mean values, the respective contributions to the self-energy part in d spatial dimensions  
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Here the respective two-point correlators are <δD(-k)δD(k)> ≡ ∫dr eikr

 <δD(r)δD(0)>, where <…> stands for voxel-average, and similarly for δR2and 
δΩ. The similarity of the above contributions is due to their common origin, the Bloch-Torrey equation (1). Further contributions to (3) involve 
multiple-point correlation functions, as well as their cross-correlators. They describe the interference between different types of diffusion and 
relaxation measurements. 

Expansion of Σ(ω,q) in ω and q is equivalent to higher-order termporal and spatial derivatives in the voxel-averaged Bloch-Torrey equation (2) 
arising after averaging over tissue inhomogeneities. Practically, diffusion and relaxation measurements access different terms in the Taylor expansion  
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In particular, without diffusion weighting, q=0, Eq. (2) describes the non-Lorentzian spectral line shape with a dispersive relaxation rate −Σ(ω,0) [1]. 
The O(q2) term yields the dispersive diffusion coefficient [2,3], D(ω) = D −Σ2(ω). For δR2 ≡ δΩ ≡ 0, the quantity D(ω) is the correlation function of 
molecular velocity [4], accessible via the oscillating gradients [4,5]. Both the term Σ4(ω) and the dispersive part of Σ2(ω) contribute to the time-
dependent diffusional kurtosis [2,3]. Higher-order diffusion cumulants originate from subsequent terms in the expansion (4). 
 
Discussion: From Eq. (3) it is evident that tissues are distinguishable by MR measurements as much as their correlation functions differ on the 
diffusion length scale. The tissue features that stand out after voxel-averaging are the distinct length scales on which D(r), R2(r) and Ω(r) vary. The 
length scales correspond to pronounced peaks in the k-dependence of the correlators entering integrals in Eq. (3); these peaks determine the ω-
dependence of Σ(ω,q) and, hence, can be quantified via time-resolved MR measurements. The effect of relaxation on the DWI is manifest in the 
expansion in q2 of the two last terms in (3): they modify Σ2(ω) and thereby cause the local field-induced deviation of the ADC from its intrinsic value 
given by the velocity autocorrelation function. Finite Σ(ω,q) is a quantitative measure of the complexity at the scale of the diffusion length. Different 
MR relaxation and diffusion measurements are simply the different means to access Σ(ω,q) or the particular terms in its Taylor expansion (4). Hence, 
we suggest to analyze the MR measurement results in terms of Σ(ω,q), as it quantifies all measurable differences of a tissue from a uniform medium. 
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