Polynomial models of the spatial variation of axon radius in white matter
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Introduction White matter axon radius 7 is a potentially useful clinical biomarker that can be derived from diffusion weighted imaging (DWI) however its estimation in a
clinical setting is hampered by poor signal-to-noise ratio and limited sensitivity to small axon radii at low gradient strengths. Most axon radius studies to date have been
performed on ex vivo tissue samples [1,2] which allow long acquisition times. Moreover, these studies assume prior knowledge of tissue orientation to reduce
acquisition requirements. Recently, a new directionally invariant protocol has been developed [3] which provides sensitivity to the axon radius distribution within
clinically acceptable scan times and hardware limitations. This technique has been demonstrated using live human subjects in a clinical scanner [4]. However, even with
unusually high clinical gradient strengths of 60mT/m, the resulting mean radius index p has low signal-to-noise. In this study we introduce a technique for mapping p
that exploits the spatial coherence of axon radius distribution across the corpus callosum (CC). Specifically, we fit a polynomial model of the spatial variation of p. This
significantly reduces the total number of parameters to estimate compared to fitting in each voxel separately and provides sensitivity to axon radius even at typical
clinical gradient strengths of 40mT/m or less.

Methods Model: Histology studies of the human CC show that axon radius distribution varies smoothly along the anterior-posterior (A-P) axis while remaining
approximately constant in the superior-inferior (S-I) direction [5]. We hypothesise that this variation can be captured by modelling the axon radius index p as a
polynomial function of A-P position. Instead of fitting the parameter separately in each individual voxel, our technique pools all the data within a region of interest
(ROI) and fits the polynomial coefficients that best describe p in all voxels simultaneously. Simulation experiment: To test our technique, we construct a synthetic ROI
to represent the mid-sagittal section of the CC. At each unique A-P voxel position within the ROI we assign a gamma distribution for 7 based on the electron microscopy
studies by Aboitiz et al [5]. We keep the intra-axonal volume fraction f approximately constant (f'=0.73) across the ROI. We use the experiment design framework in
[3] to generate 14 multi-shell acquisition protocols with maximum gradient strengths varying from 20mT/m to 200mT/m. Each acquisition protocol comprises 260
measurements (240 gradient directions divided optimally into 3 HARDI shells and 20 b=0 s/mm” measurements). For each acquisition protocol, we use Monte Carlo
simulations of diffusion [6] to generate synthetic data in the ROI with additive Rician noise at SNR=20. We then estimate p and f'in each individual voxel and across the
whole ROI using the polynomial model. We fit the simplified CHARMED model in [3,4], which assumes that the axons in each voxel are randomly packed parallel
cylinders of equal radius. For each data set, we fit polynomials for p from order 0 to 5 and use the Bayesian Information Criterion (BIC) [7] to determine the optimal
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polynomials to describe the variation of p across the ROI. Unlike the voxel-by-voxel fitting methods, the estimates obtained using our method are strongly correlated
with 77 and they capture the general trends we expect to see in the CC, both for simulated and human brain data. While the technique does struggle in the genu we
believe this is due to the lack of sensitivity to the very small radii which dominate this region. In future, we plan to improve the fitting technique to model variation in
the S-I direction as well as the A-P direction and to investigate ways to improve fitting in the genu. The next step will be to investigate intersubject variation by fitting
the model for multiple subjects. Our eventual aim is to use the parameters of the polynomial model of p as a clinical biomarker for white matter diseases such as
schizophrenia and multiple sclerosis with more statistical power than voxel-by-voxel estimates.
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