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Introduction: MRI relies on dynamic linear gradients for signal encoding. However the realization of given 
gradient time-courses is usually imperfect due to physical limitations,  including limited bandwidth of gradient 
amplifiers, gradient chain delays, crosstalk between gradient coils, and eddy currents in the rest of the setup. 
Jointly, all of these mechanisms influence how the effective magnetic field dynamics in the magnet bore deviate 
from an ideal gradient response. The aim of the present work was to characterize this effective field response 
comprehensively based on actual field measurements. The resulting method is based on driving the gradient 
system with test pulses and measuring the resulting field dynamics with a third-order NMR camera. 
Methods: Within the scope of this work an MRI scanner’s gradient system is treated as one linear time-invariant 
system (LTI) with an input for each of three gradient chains and 16 outputs representing resulting field 
components up to third order in spherical harmonics (Tab. 1). Such a system can be fully described by 3 x 16 = 48 
impulse response functions (IRF) [1,2], which translate the input functions il(t) into the outputs gm(t) according to 
gm(t) = ∑

l
 ∫il(τ)·irfl ,m(t- τ)dτ in time domain, Gm(ω) = ∑

l
 Il(ω)·IRFl,m(ω) in frequency domain, giving rise to the 

net magnetic field B(r,t) = ∑
m
 bm(r)·gm(t). Field responses were measured with a field camera consisting of 16 

NMR probes distributed on a 20-cm sphere [3], allowing to extract dynamic phase coefficients               
k m ( t ) = γ ∫0

t      gm ( τ ) d τ . In this representation (cf. Tab. 1), k0 is a global phase term reflecting potential dynamics of 
B0, k1-3 correspond to the conventional kx, ky, kz, and k4-8 and k9-15 describe 2nd- and 3rd-order terms respectively 
[4]. The corresponding gm(t) were obtained by differentiation of km(t). Measurements were performed on 3T and 
7T Philips Achieva systems (Philips Healthcare, Best, NL / Cleveland, USA). Per gradient channel six triangular 
gradient blips of different duration [0.20-0.33 ms; peak amplitude 18 and 12 mT/m at 3T and 7T respectively] 
were applied as test inputs. The variation in blip duration served to compensate for zeros in individual blip spectra 
and was chosen such as to cover the gradient systems’ expected bandwidth. The desired IRFs were obtained by 
deconvolution of gm(t) in the Fourier domain using least-squares fitting to combine data obtained with different 
blip lengths. For validation the resulting IRFs were used to predict the actual field dynamics of various other gradient waveforms.  

Results: The study focused on the first-order IRFs, i.e., on the desired 
gradient responses. Their bandwidths at FWHM were approximately 19 kHz 
at 7T and 17 kHz at 3T. Figure 1 shows the real and imaginary part of the 
first-order IRF in the y-direction, at both field strengths. In the central part of 
the IRF (within ±3000 Hz) a pattern of very small peaks was found, specific 
to each gradient direction, that correspond to mechanical vibrations of the 
gradient coils (Fig. 1, top).  In the time domain the effects of the mechanical 
vibrations are seen as oscillations in the k-coefficient after the end of a 
gradient pulse (Fig 2D). The oscillations are reproducible and can be 
predicted with very high accuracy over a wide range of pulse shapes and 
sizes. Triangular and trapezoidal gradient pulse shapes of 0.2-25 ms length 
and 0.1–40 mT/m amplitude, were well predicted by the IRF. Figure 2 shows 
the response of the gradient system to a short triangular pulse, showing the 
smoother shape of the actually performed gradient. The total area of the 
pulse, as reflected in the step size of the k-trajectory, was conserved (Fig. 
2C-D), with a prediction error of ~0.1%. The prediction stayed within the 
same error range for longer sequences with high-amplitude gradient pulses, 
such as EPI (Fig. 3). A predictable effect of the gradients could also be seen 
in k0, as well as in the higher-order coefficients (Fig. 4). However, the 
higher-order responses were generally small, making their exact prediction 
difficult in the presence of thermal drifts, non-linearities of the gradient 
response and measurement noise.  
Conclusion: The impulse response of gradient systems can be determined 
with great accuracy by measuring the responses to a suitable set of test 
inputs with an NMR field camera. The procedure is simple and fast and 
permits the reliable prediction of actual k-space trajectories as well as of 
reproducible higher-order effects. It could serve as the basis of system 
optimization through pre-emphasis adjustments and for improved image 
reconstruction. 
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