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Introduction 
Over the past 20 years many papers have discussed theoretical design methodologies for MRI gradient coils. She et al. [1] presented a method based on finite element 
method to design a gradient coil. Compare with the standard target field method, this is an attractive method because the design procedure can be employed to also 
consider the eddy current effects and an inhomogeneous analysis domain. However, the very large computational efforts induced by finite element analysis limit the 
practical application of this method. 
In this paper, we present an efficient numerical iterative optimization method for designing linear gradient coil on a current-carrying surface. Using the scalar stream 
function as design variable, the value of the magnetic field inside a computational domain is calculated using the least square finite element method. The first-order 
sensitivity is calculated using the adjoint equation method. The detailed numerical optimization skills are discussed in order to obtain a fast and effective optimization 
procedure. 

Theory 
The optimization objective used in this paper is the least square type function
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x-gradient of specified magnetic field, ΩROI is the region of interest (ROI) and the magnetic field Bz is calculated using the 
Least-squares finite element method [2]. That is to find 
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Here, Vh  is the Lagrange finite element space of computational domain Ω=Ω1∪Ω2 (ROI is inside of Ω2),  h is the size of mesh, 
nr  is the unit normal vector on the boundary Г or current-carrying surface Гcoil (figure 1), 
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coilx Γ∈ denotes the jump of u across the Гcoil, μ is the permeability and the 

surface current density J
r  can be expressed as )( nψJ rr

×∇=  using the stream function ψ which is the design variables. 
The design of gradient coil is an inverse problem. One needs to use the regularization technique to avoid the oscillation of the 
coil layout. Typically the inductance of the coil, or the magnetic energy term is combined to obtain a reasonable layout of the 
coil. In our example, we use the limited-memory BFGS method [3] with filter technique to implement the regularization effect. 
In the limited-memory BFGS, the first-order sensitivity of our objective can be obtained by the 
following formula ∂L/∂ψ=∂F/∂ψ +αT (∂K/∂ψ) B+ αT (∂J/∂ψ). Here L=F (B(ψ), ψ) + αT(J-KB) is 
the corresponding discretized Lagrangian model of the original optimization problem, F is the 
discretized expression of objective function in equation (1), B is the unknown vector of magnetic 
field, α is the Lagrange multiplier, J is the discretized vector of surface current density and K is 
the discretized global stiffness matrix using the LSFEM. The Lagrange multiplier α can be 
obtained by solving the following adjoint equation KTα = ∂F/∂B. 
An iterative optimization of gradient coil design includes several key steps which are run 
sequentially (figure 2). The main computational cost for each iteration is the steps of the finite 
element analysis and sensitivity analysis.  When the LSFEM is used to discretize a design domain, 
the discretized stiffness matrix K is kept unchanged and merely needs to be assembled once for 
all iterative loops. Therefore only the vector on the right hand side of the discretized equilibrium 
equation needs to be updated in each iteration. Based on this condition, one can perform the 
decomposition of the matrix K merely once and save the decomposed matrices at the beginning of 
the optimization. Then only back substitution is performed to obtain the solution of LSFEM and 

sensitivity. Because the time used for substitution step is much shorter than that used for the decomposition step (table 1), this strategy 
can be employed to speed up the whole optimization procedure. 
Numerical results  
Figure 3 shows an example of a Gx gradient coil 
on a cylindrical surface Гcoil with radius=45mm 
and height=270mm. The ROI is a cylinder with 
radius=30mm and height=42mm. The whole 
domain is discretized into a hexahedral mesh 
with 89610 points. The Gx gradient coil layout 
(contour lines of the stream function) on the Гcoil 
is shown in figure 3a. The gradient strength at the 
center of ROI is 10mT/m. Figure 4 shows layouts 
of two multi-layer Gx gradient coils for target 
gradient strength =10mT/m. 
Discussion 
This abstract presents a fast optimization procedure to design a surface gradient coil for MRI. Based on LSFEM, numerical examples 
demonstrate that this method can be used to design a gradient coil on any surface.  
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Figure 1. Current-carrying surface 

and computational domain. 

 
Figure 2. Flow chart of optimization. 

Degree of Freedom 283500 
Decomposition Time  319.1 s 
Substitution Time 5.1 s 
Table 1, The CPU time for matrix 
decomposition and substitution. 

Figure 4 Layouts of the Gx
gradient coils using (a) two
cylinder surface coils and
(b) one cylinder and one
planar surface coil.

 
Figure 3, (a) Layout of Gx gradient coil with current = 4.5824 A. (b) Percentage 
deviation of ∂Bz/∂x from 10mT/m on z=0 (left) and y=0 (right) plane in the ROI. 
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