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INTRODUCTION: In Magnetic Resonance Imaging (MRI), the distortions produced by field inhomogeneities can be corrected with post processing techniques, e.g. 
linear correction and conjugate phase reconstruction methods [1][2]. However, these methods do not provide a theoretical framework to analyze the distortions. In this 
work, propose the Fractional Fourier Transform (FrFT) [3] as a way to study the distortions produced by quadratic field inhomogeneities. Concretely, we exploit the 
relation between the measured MR signal and the FrFT of the magnetization of an object under quadratic fields. We analyze some commonly used sequences to 
exemplify the usefulness of this method. 

THEORETICAL BACKGROUND: For simplicity, we show the theory in one dimension. If ݌ሺݔሻ  ൎ ଴݌  ൅ ݔଵ݌ ൅  ଶ is the fieldݔଶ݌
inhomogeneity (we assume that it can be well approximated by a quadratic function) and ݇ሺݐሻ is ׬ ௧଴ݏሻ݀ݏሺܩ  as usual, the MR signal 
becomes: ݏሺݐሻ ൌ  න ݉ሺݔሻ݁ିଶ௜ሺ௞ሺ௧ሻ௫ା௣ሺ௫ሻ௧ሻ݀ݔ ൌ ݁ିଶగ௜௣బ௧ න ݉ሺݔሻ݁௜గ൫ିଶ௣మ௧௫మିଶሺ௞ሺ௧ሻା௣భ௧ሻ௫൯݀ݔ 

Using the change of variables cot ሻݐሺߙ ൌ െ2݌ଶݐ and 2ߩሺݐሻ csc ሻݐሺߙ ൌ െ2ሺ݇ሺݐሻ ൅  ሻ we can reformulate the signal equation as theݐଵ݌ 
FrFT of the underlying object: ݏሺݐሻ ൌ  ݁ିଶగ௜௣బ௧ න ݉ሺݔሻ݁௜గ൫ିଶ௣మ௧௫మିଶሺ௞ሺ௧ሻା௣భ௫ሻ௧൯݀ݔ ൌ ݁ିଶగ௜௣బ௧ න ݉ሺݔሻ݁௜గ൫ୡ୭୲ ఈሺ௧ሻ௫మାଶ ୡୱୡ ఈሺ௧ሻఘሺ௧ሻ௫൯݀ݔൌ ݁ିଶగ௜௣బ௧݁ି௜గ ୡ୭୲ ఈሺ௧ሻఘమሺ௧ሻඥ1 െ ݅ cot  ሻሻݐሺߩఈሺ௧ሻሾ݉ሿሺܨ ሻݐሺߙ
where ܨఈሾ݉ሿሺߩሻ represents the FrFT of fractional order ߙ of the magnetization ݉ measured at the fractional frequency [3] ߩ. By writing 

s'ሺݐሻ ൌ  ݁ଶగ௜௣బ௧݁௜గ ୡ୭୲ ఈሺ௧ሻఘమሺ௧ሻඥ1 െ ݅ cot ሻିଵݐሺߙ ሻݐሺ′ݏ ሻ we obtain the relationݐሺݏ ൌ ଶ݌ ሻሻ. Ifݐሺߩఈሺ௧ሻሾ݉ሿሺܨ  ൌ 0 then ߙሺݐሻ ؠ ߨ 2⁄ ሻߩఈሾ݉ሿሺܨ , ؠ ሻݐԢሺݏ ሻ andߩሾ݉ሿሺܨ ൌ  ሻ and the classical relation between the MR signal and the Fourier transform of the magnetizationݐሺݏ 
is recovered. Consequently, the distortion produced by the quadratic field at time ݐ is directly related to the order of the FrFT at the same 
instant. The quadratic inhomogeneity thus changes the frequency domain over which we perform the measurements, from the “pure” 
frequencies in the Fourier domain to “fractional frequencies” in intermediate domains.  

TRAJECTORY ANALYSIS: To visualize the distortions we introduce the notion of a ߩ ൈ  plane or polar plane as a graphical analysis ߙ
tool.  These can also be represented by Cartesian coordinates ሺݔሺݐሻ, ሻݐሺݔ :ሻሻ, withݐሺݕ ൌ ሻݐሺ݇ሺݐଶ݌2  െ ሻ1ݐଵ݌ ൅ ሺ2݌ଶݐሻଶ  

and ݕሺݐሻ ൌ െ ሺ௞ሺ௧ሻି௣భ௧ሻଵାሺଶ௣మ௧ሻమ  

Using this representation we study the “ߙߩ–trajectories” described by ሺߩሺݐሻ, ,ሻݐሺݔሻሻ or ሺݐሺߙ  ሻሻ for someݐሺݕ
commonly used k–space trajectories such as: 
Radial readout: In this case we assume that ݇ሺݐሻ ൌ ݐ for ݐ଴ܩ ൒ 0. The ߙߩ–trajectory is an arc of a circle centered at ܽ ൌ  ቀீబା௣భସ௣మ , 0ቁ with radius ݎ ൌ ீబା௣భସ௣మ  (Fig. 1a). We see that, as the ratio ܩ଴ ⁄ଶ݌  increases, so does the radius of this 
circle and the deviation from the vertical line becomes negligible for small ݐ. This is consistent with the general 
knowledge that short readouts are less sensitive to inhomogeneities. 
Standard DFT readout: We assume the gradient is formed by a negative lobule of duration ݐ଴ followed by a positive 
one. In this case ݇ሺݐሻ ൌ  െܩ଴ݐ if  0 ൑ ݐ ൏ ሻݐ଴ and ݇ሺݐ ൌ ݐ଴ሺܩ  െ ଴ݐ ଴ሻ ifݐ2 ൑  The negative part of the sequence .ݐ
describes a ߙߩ–trajectory which is an arc of a circle centered at ܽି ൌ  ቀீబା௣భସ௣మ , െ2ܩ଴ݐ଴ቁ with radius ିݎ ൌ ଵସ௣మ ඥሺ1 ൅ ଴ଶܩ଴ଶሻݐଶଶ݌64 ൅ ଴ܩଵ݌2 ൅ ଵଶ, whereas the positive part describes an arc of a circle centered at ܽା݌ ൌ ቀீబା௣భସ௣మ , 0ቁ with radius ݎା ൌ  ீబା௣భସ௣మ , as in the previous sequence (Fig. 1b). 
EPI readout: In this case the sequence is composed by train of alternating square pulses of magnitude േܩ଴ and width 2ݐ଴. In this case the ߙߩ–trajectory consists on arcs of circles with centers in  ܽ௡ ൌ  ቀേ ீబା௣భସ௣మ , ט ீబ௧బଶ ݊ቁ for ݊ ൌ 0, 1, …. (Fig. 1c).  
Spectroscopy: In this case no gradients are applied. Consequently, only the field inhomogeneity will contribute to the 
signal equation. The ߙߩ–trajectory will be the same as in the radial sequence, namely, arcs of circles centered at ܽ ൌ  ቀ ௣భସ௣మ , 0ቁ. As ݌ଵ goes to zero, the trajectory collapses to the origin, which is interpreted as the continuous component of the signal for any fractional order ߙ. 

RECONSTRUCTION: The distorted samples can be seen as exact samples acquired on different positions in the ߙߩ domain. Figure 2 shows three different possible 
reconstructions. Column (a) shows the reconstruction obtained assuming that the samples are on the Fourier domain whereas in column (b) the samples are assumed to 
be in the constant order FrFT and in (c) they are assumed to be in the variable order FrFT. Note that FT reconstruction adds geometric and phase distortion. The 
reconstruction with constant order FrFT corrects most of the phase distortion but maintains the geometric distortions. Reconstruction with the variable order FrFT 
corrects both distortions. 

CONCLUSIONS: In this work we have proposed a novel framework, based on the Fractional Fourier Transform to understand the distortions produced by quadratic field 
inhomogeneities. This framework allows interpreting these distortions as a domain change, from the “pure” frequencies in the Fourier domain to the “fractional 
frequencies” in the intermediary domain. This framework also allows quantifying the magnitude of these distortions. Consequently, this tool offers a way to study 
correction methods, both in image reconstruction and sequence development, for field inhomogeneities that can be well approximated by quadratic functions. 
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