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A Novel MRI Framework for the Quantification of Any Moment of Arbitrary Velocity Distributions 
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INTRODUCTION: Characterization and quantification of blood flow dynamics is of pivotal importance to the understanding and detection of 
cardiovascular disease. MRI can determine several important flow dynamics parameters but might not yet have reached its full potential. In practice, 
each voxel in an object contains a distribution of spin velocities, s(v). Distributions can be characterized by their moments (table 1). Under the 
assumption that s(v) is symmetric about its mean, the data obtained from a phase-contrast (PC) MRI measurement permit an estimation of the first 
raw moment of s(v), i.e. its mean velocity, Vm [1,2]. In this work, we present a generalized framework for the quantification of any moment of an 
arbitrary spin velocity distribution s(v) and describe how this framework relate to existing MRI methods for the assessment of fluid flow. 
 

THEORY: For an arbitrary spin velocity distribution s(v), the nth raw moment 
is given by μ’n =-∞∫

∞vn·s(v)dv  and the nth central moment is given by  
μn =-∞∫

∞(v- μ’1)n·s(v)dv (table 1). Including motion terms up to the first order, 
the complex-valued MRI signal of a voxel can be written as the Fourier 
transform  

( ) dvevsCekS
V

iφi
v ∫ −= vkv)(add  [Eq. 1],   

where C is a real-valued constant describing spin density, relaxation effects, 
etc, φadd is a phase-shift caused by for example field inhomogeneities, and kv 
is proportional to the first moment of the gradient waveform  
(VENC = π / kv). Moment in the function domain (velocity-space) 
corresponds to derivation in the transform domain (kv-space) at kv = 0. Thus, 
to obtain the nth moment of a voxel without making assumptions about the 
distribution s(v), a measurement of the nth derivative of S(kv) at kv = 0 needs 
to be determined.  
 

MATERIALS AND METHODS: To demonstrate the application of the moment 
framework, a non-Gaussian asymmetric intravoxel velocity distribution s(v) 
(Fig. 1a) was extracted from computational fluid-dynamics data describing 
post-stenotic flow [3]. The corresponding MRI signal S(kv) was generated by 
computing Eq. 1 for a range of kv-values (Fig. 1 b and c). By utilizing finite 
differentiation, the nth derivative of S(kv) (nth moment of s(v)) can be 
approximated from a minimum of n+1 measurements of S(kv). The accuracy 
of the finite differentiation approximation, with and without noise, was 
investigated as a function of the spacing, Δkv for the estimation of mean 
velocity and variance.  
 

It can be shown that the first derivative of S(kv) approaches the derivative of 
arg(S) when kv → 0. Assuming that s(v) is symmetric about its mean implies 
that arg(S(kv)) is linear on the interval |kv| < π/Vm. In this way, the PC-MRI 
phase-difference method can be used to estimate the mean velocity Vm. 
Similarly, by modeling a specific distribution of s(v) and fitting the model 
parameters to measurements with larger Δkv, PC-MRI intravoxel velocity 
standard deviation (IVSD) mapping [4] can by used to estimate the standard 
deviation σ. 
 

RESULTS: A non-Gaussian asymmetric spin velocity distribution s(v) along 
with the modulus and argument of the corresponding MRI signal S(kv) is 
shown in Fig. 1a-c. A small Δkv (good approximation of the derivative) 
provides accurate estimates of Vm (Fig. 2a) and σ (Fig. 3a). In presence of 
noise, measurements of S(kv) at kv ~ 0 become indistinguishable, resulting in 
unreliable estimates (Fig. 2b and 3b). Employing the PC-MRI phase-
difference and IVSD methods, more accurate estimations of Vm (Fig. 2c) and 
σ (Fig. 3c), respectively, can be obtained with greater Δkv. 
 

CONCLUSION: We have presented a generalized framework for the 
quantification of any moment of arbitrary intravoxel spin velocity 
distributions. The relationship between this framework and the existing PC-
MRI phase-difference and IVSD methods was described. The presented 
moment framework may assist in improving the understanding of existing 
MRI methods for the quantification of flow and motion and be a fertile 
ground for the development of new methods. 
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Table 1. Examples of moments of a distribution 
Moment Relation to common quantities 
First raw moment, μ’1 Mean, Vm = μ’1 
Second central moment, μ2 Standard deviation, σ = sqrt(μ2) 
Third central moment*, μ3 Skewness, γ1 = μ3/σ3 
Fourth central moment*, μ4 Kurtosis, γ2 = μ4/σ4 
* Also known as the 3rd and 4th standardized moments, respectively. 
 

 
Fig. 1. a) A non-Gaussian asymmetric spin velocity distribution 
s(v) along with b) the modulus and c) the argument of the 
corresponding MRI signal S(kv).  

 

Fig. 2. The mean of s(v), Vm, as obtained by finite difference 
approximations of the first derivative of S(kv) at  kv = 0 in a) 
absence of noise and b) presence of noise, and c) as obtained by 
the PC-MRI phase-difference method. The dashed lines indicate the 
true Vm. In c) the deviations of the PC-MRI estimates from the true 
Vm are due to the assumption that s(v) is a symmetric distribution. 
At |Δkv| > 0.7, velocity aliasing occurs. 

 

Fig. 3. The standard deviation of s(v), σ, as obtained by finite 
difference approximations of the second derivative of S(kv) at  kv = 
0 in a) absence of noise and b) presence of noise, and c) as 
obtained by the PC-MRI IVSD method. The dashed lines indicate 
the true σ. In c) the deviations of the PC-MRI estimates from the 
true σ are due to the assumption that s(v) is a Gaussian distribution

a)                             b)                             c) 

 a)                             b)                            c) 

  a)                             b)                            c) 
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