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Introduction 
Diffusion tractography has become an important method for assessing white matter (WM) structure. Depending on the application, the large number of streamlines 
typically produced by the tracking algorithm may make the dataset difficult to handle. As there will be many streamlines corresponding to each anatomical WM tract, it 
is often advantageous to group them into clusters in which all streamlines correspond to the same anatomical tract. In group studies, identifying tracts across subjects 
may be an additional objective. A common problem with clustering methods is their ability to scale, especially if data from multiple subjects is analysed. We present an 
approach based on repeated clustering of subsets that is conceptually transparent and that scales well to large tractography datasets and subject groups. 
 
Clustering 
The distance between streamlines A 
and B is defined as 
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where ai and bi are the coordinates 
of the points of A and B 
respectively. In words, the distance 
between two tracts is defined as the 
sum of the Euclidean distances 
between their points. In general, 
two streamlines will have different 
numbers of points. Therefore, prior 
to clustering, all tracts are 
resampled to consist of Np=25 points each. As there are two possible combinations of both streamlines’ indexing directions, the minimum of the corresponding 
distances is used. For a dataset containing Ns streamlines, D will be an Ns-by-Ns matrix. This matrix can be used to run clustering on, but as its size scales with Ns2, it is 
clear that this approach is not suitable for large (high-resolution) datasets. Practically, the upper limit on the number of tracts would probably lie below Ns=50,000, at 
which point the size of D would be almost 10 GB if it were stored as single precision numbers. 
We solve the size problem by taking a number Np of random permutations of all streamlines and dividing them into subsets of predetermined size Ns’, which we chose 
to be 10,000. On every subset of every permutation, hierarchical clustering with complete linkage as implemented in MATLAB is run. As the number of clusters Nc that 
we are looking for is small (≤300) compared to the size of the subsets, it seems reasonable to expect clustering to be consistent to a large degree between subsets. This 
was confirmed by analysis of intermediate results. Cluster label correspondence between the subsets in a permutation and between permutations is determined using the 
distance Dab between the mean tracts of the clusters. In the final step, each tract is assigned the label that occurred most often over all permutations, exploiting the 

consistency of clustering between subsets. 
 
Methods 
Diffusion weighted imaging (DWI) datasets were acquired of the brains of 15 healthy volunteers 
on a Siemens Trio 3T system with a 32-channel head coil. The diffusion scheme consisted of 61 
non-collinear directions at b=1000 s/mm2 and 7 volumes with b=0. Resolution was 2.0x2.0x2.0 
mm3, with TR=8300 ms, TE=95 ms, matrix size 110 x 110 x 64 and GRAPPA acceleration factor 
2. Diffusion analysis was performed using the Camino package [1]. Principal diffusion directions 
were obtained from q-ball reconstructions with spherical harmonics up to fourth order [2]. 
Deterministic tractography was run with a fractional anisotropy (FA) threshold of 0.15. All voxels 
with FA above 0.25 were used as seeds and streamlines whose length was shorter than 25 mm 
were discarded. This produced around 50,000 streamlines per subject. In one subject, 
tractography was run again with eight seeds per voxel, separated at 1 mm distance from each 
other, producing just over 375,000 streamlines. All streamlines were nonlinearly registered to a 
group template that was created using the FNIRT program that is included in FSL [3]. 
 
Results and discussion 
Figure 1a shows the results obtained by applying the algorithm to the single subject data. The 
clusters are well-separated, confirming that clustering is indeed largely consistent across subsets. 
This conclusion is reinforced by figure 1b and c, which show that although most streamlines have 
been assigned to a relatively large number of different clusters, many have been assigned often to 
the final cluster. The differences between bundles in figure 1c are marked, but this is not 
unexpected as the anatomical separation between WM bundles differs greatly. In order to find 
consistent clusters across subjects, the registered streamline sets of different subjects were 
concatenated and clustering was run on the resultant dataset, containing approximately 850,000 
streamlines. Results are comparable to those obtained in a single subject, but clusters are now 
consistent over all subjects. Example clusters are shown in figure 2. A key advantage of the 
method described here is its ability to scale to large datasets. It is conceivable that datasets would 
be much larger than those used here, but this should not pose a problem as execution time scales 
linearly with the number of streamlines Ns and working memory usage depends only on the subset 
size Ns’. 
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Figure 1. a) Clustering results on a single subject; Nc=200, Np=25. Clusters were split into 8 groups for visualisation. b) 
Number of different clusters each streamline was assigned to across permutations. c) Number of times each streamline 
was assigned to its final cluster.

Figure 2. Group clustering results; Nc=300, Np=100. Three
unilateral clusters were selected in a single subject (cingulum,
arcuate and uncinate fasciculi) and displayed for all 15 
individual subjects.  
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