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INTRODUCTION 
Dynamic magnetic resonance (MR) inverse imaging (InI) can improve the temporal resolution of blood oxygen level dependent (BOLD) contrasts fMRI to the order of 
milliseconds [1]. In InI, the spatial resolution and the source localization accuracy both critically rely on the signal-to-noise ratio (SNR) of the measurements [1]. The 
localization of the functional activity in ill-posed InI measurements with improved SNR can be done by employing beamformers. Many beamformers are mainly 
derived from minimizing the output variance of spatial filters quantified by the L2 norm. And the results are usually spatially blurred. Previously, source localizations 
based on the L1 norm minimization has been proposed to give spatially focal estimates of neuronal currents measured by the magnetocephalography (MEG) [2][3]. 
Mathematically, the minimization of the L1 norm has always been applied to the current distribution itself. To our knowledge, there has no studies incorporating the 
minimization of the L1 norm in the design of spatial filter for functional brain imaging analysis yet. Here we propose a beamformer approach combining the eigenspace 
of the measured data and the L1 norm minimization of the spatial filters’ output noise amplitudes. The method was found capable of reconstructing hemodynamic 
signals in both spatial and temporal fashion and providing less blurry functional images than LCMV beamformer in our visuomotor experiments. 
METHODS 
The noise-whitened InI measurement for one pixel in the accelerated projection image within the FOV is denoted as Yw, which can be expressed as www nXAY +⋅= , 
where Aw is the noise-whitened reference (fully gradient encoded data in 3D) providing the sensitivity over the magnetization to be reconstructed in each channel of a 
coil array, X is the image to be reconstructed and nw is the whitened noise. The time-course correlation matrix ]YY[ED T

ww ⋅= can then be calculated. Assuming D has a 
rank Z, the eigenvalue decomposition on D can generate two signal DS and noise DN correlation matrices, that is, D=DS+DN, where 
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and λi (i=1..Z) are the descending-sorted eigenvalues, i.e. λ1>…>λp >…>λZ, and Ui, Vi, are associated eigenvectors. DS is derived from D’s first p largest eigenvalues 
and their associated eigenvectors, while DN is obtained from the rest eigenvalues, λp+1, λp+2,., λZ and their associated eigenvectors. Since the measurement data had been 
whitened prior to the eigenvalue decomposition, the noise power now is normalized to unity. The threshold selected for the first p largest eigenvalues and its associated 
eigenvectors can then be done by selecting eigenvalues larger than 1 [4]. We propose the eigenspace minimum L1 norm beamformer WL1 as a minimization problem 
with the objective function:
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The fMRI experiment used a voluntary visuomotor task: the subjects were 
asked to respond with the button pressing using their right hand after 
perceiving the visual checkboard stimulus (500 ms duration, 100% contrast) 
at the right visual hemifield. Ten healthy subjects were recruited in this study 
with informed consent. The InI was measured with TR=100 ms and TE=30 
ms using a flip angle of 30 from a 3T scanner (Tim Trio, Siemens Medical 
Solutions, Erlangen, Germany) with a 32-channel head coil array. Each run of 
the experiment last for 4 minutes and 32 trials of the stimulus were randomly 
presented. Each subject was measured for four runs. The analysis of the fMRI 
InI data followed our previously published method [1] using the General 
Linear Model with the finite impulse response (FIR) basis function. The 
minimum L1 norm beamformer reconstructions were calculated using the 
CVX program [5]. 
RESULTS 
Areas at the contralateral visual and motor cortices were found active in the 
reconstructed images. These two ROIs were respectively selected for further 
analysis of the time courses. The group averaged time courses of t-values at 
these two ROIs were linearly scaled between [0 1]. We chose the threshold of 
0.4 and 0.2 for motor and visual ROIs, respectively. The spatial 
reconstruction clearly shows that eigenspace L1 norm beamformer offers 
much better spatial resolution than LCMV beamformer. The figure below 
right shows linearly scaled time courses. We found that the visual ROI has the 
onset time at 2.1s, the peak time at 3.7s, and the full-width-half-maximum 
(FWHM) of the time course 5.4s, while M1 area has the onset time at 2.8s, 
the peak time at 4.4s, and the FWHM 4.7s.  
DISCUSSION 
The eigenspace L1 norm beamformer WL1 was found to provide sparse 
reconstructions. The localization results matched our previous beamformer 
analysis [1]. The normalized time courses show motor cortex response lags 
averagely behind visual cortex response by 700ms. Such latency is consistent 
with the causal sequence in our visuomotor experimental design. In the future, 
we will systematically compare reconstruction mechanisms using different 
minimum L1 and the L2 norm constraints to achieve the optimal strategy for 
data analysis in fMRI InI measurements. 
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