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Introduction 
The importance of multivariate statistical methods has been realized in fMRI in recent years as they are more proficient in detecting brain activations in a noisy 
environment. One such popular method is local canonical correlation analysis (CCA), where instead of looking at the single voxel time course, the joint time courses of 
a group of neighboring voxels are investigated. The value of a suitable test statistic is used as a measure of activation. It is customary to assign the value to the center 
voxel. However, this is a choice of convenience and the method is prone to false activations especially in a region of localized strong activation. The reason for the 
increase in false activations is due to two different deficiencies of CCA: The first deficiency is due to too much freedom of the spatial weights allowing for both positive 
and negative linear combinations of voxels which results in an improper spatial smoothing. The second deficiency is the so-called bleeding artifact [1] due to the center 
voxel assignment scheme without any constraint on the spatial weights. To rectify these deficiencies we investigate different novel linear constraints and a nonlinear 
constraint for the spatial weights on the ability to detect activation patterns in a standard fMRI motor task and a more complicated episodic memory task. 
Theory 
Let ܻ be the matrix representing p voxel time courses with dimension ݐ ൈ ݐ and ܺ the conventional design matrix of size ݌ ൈ  .for the r temporal regressors ݎ
Furthermore, let ߙ and ߚ be two unknown vectors of size ݌ ൈ 1 and ݎ ൈ 1, respectively. In CCA, we look for the linear combinations of voxel time courses ܻߙ and 
temporal regressors ܺߚ such that the correlation between both quantities is maximum. This leads to an eigenvalue problem with min(p,r) solutions from which the 
solution with the largest eigenvalue (i.e. maximum canonical correlation) is being chosen. To put constraints on the spatial weights ߙ, we consider the following four 
scenarios for the components ߙ௜ of ߙ where ߙଵ is the weight for the center voxel and the other ߙ௜Ԣݏ represent the weights for the neighborhood voxels. 
௜ߙ .#1 ൐ ଵߙ .2 #         ݅ ׊ 0 ൒ భ೛షభ ∑ ௜୮୧ୀଶߙ ൐ 0 and ߙ௜ ൐ ଵߙ .#3         ݅ ׊ 0 ൒ ∑ ௜୮୧ୀଶߙ ൐ 0 and ߙ௜ ൐ ଵߙ .#4     ݅ ׊ 0 ൒ maxሺߙ௜ሻ ൐ 0 and ߙ௜ ൐  .݅ ׊ 0
All of these constraints lead to a proper spatial smoothing (low pass filtering) because all components of ߙ are larger than zero. Method 1 has been investigated by 
Friman et al [2] in fMRI and found to be superior than unconstraint CCA. It can easily be shown [3] that constraint #1 leads to the same equation as unconstrained 
CCA. Thus, the solutions of unconstrained CCA need to be only searched if constraint #1 is in addition satisfied. Computationally, method 1 is fairly easy to 
implement. The disadvantage of method 1 (and also of unconstrained CCA) is the bleeding artifact because the center voxel for which the activation is assigned to, is 
not guaranteed to have the maximum spatial weight; similarly method 2. Method 3 and method 4 are quite different from the previous methods because the constraints 
do not lead by construction to any bleeding artifact. Method 4 has the nice property that the coefficients are minimally restricted and at the same time satisfying the 
necessary positivity conditions and providing maximum weight for the center voxel.  
         To solve for linear constraints in ߙ (methods 2-3), it is possible to linearly transform the ߙ to ߙ෤ ൌ  ෤ satisfies the simpleߙ to condition 1 such that ߙܯ
condition ߙ෤௜ ൐ ௜௝ܯ ௜௝ሻ is given byܯFor example, for method 3 matrix M=ሺ . ݅ ׊ 0 ൌ 1 for ݅ ൌ ଵ௝ܯ  ,݆ ൌ െ1 for j>2, all other ܯ௜௝ ൌ 0. This transform of ߙ then leads to 
a transformation of the data ܻ so that the spatial covariate becomes ܻିܯଵߙ෤ ൌ ෨ܻߙ෤, and the maximum correlation between this covariate and ܺߚ need to be found subject 
to the constraint on ߙ෤. For the nonlinear constraint (method 4), such a transformation is not possible. We derived the solution for this case from first principles using 
Lagrange multipliers by converting the CCA problem into a multivariate regression problem ܻߙ ൌ ߚܺ ൅ ߚ where  ߝ ൌ ܺାܻߙ.  Note that this ߚ is only up to a scale 
factor equivalent to the  ߚ  in CCA. Using the least squares approach then leads to  the objective function  ݂ሺߙ, ,ߣ ,ߤ ሻߥ ൌ ߙܣᇱߙ ൅ ߙܤᇱߙሺߣ െ 1ሻ ൅ ଵߙଵ൫ߤ െ max൫ߙଶ, … , ௣൯ߙ െ ଵଶ൯ߥ ൅ ଶߙଶሺߤ െ ଵଶሻߥ ൅ ڮ ൅ ௣ߙ௣൫ߤ െ   ௣ଶ൯ߥ
where ܣ ൌ ܻᇱሺ1 െ ܺܺାሻᇱሺ1 െ ܺܺାሻܻ,   ܤ ൌ ,ߣ ሺܻሻ, andݒ݋ܿ ߤ ൌ ሺߤଵ, . . . , ,௣ሻߤ ߥ ൌ ሺߥଵ, . . . ,  :௣ሻ are Lagrange multipliers. Differentiation leads to different scenariosߥ
A) The solution is equivalent to a solution for the unconstrained CCA problem that also satisfy the constraints in #4.  
B) Another solution for ߙ is obtained by the following general eigenvalue equation (here we use Einstein summation convention for convenience): H௠௝ߙ௝ ൌ െߣS௠௝ߙ௝    where ߙଵ ൌ ௟ , Hଵ௝ߙ ൌ Aଵ௝ ൅ A௟௝ ൅ ሺAଵଵ ൅ A௟ଵሻߜ௝௟ , Sଵ௝ ൌ Bଵ௝ ൅ B௟௝ ൅ ሺBଵଵ ൅ B௟ଵሻߜ௝௟ , H௠௝ ൌ A௜௝ ൅ A௜ଵߜ௝௟ ,  S௠௝ ൌ B௜௝ ൅ B௜ଵߜ௝௟ for ݈ א ሼ2, . . . , ,ሽ but fixed݌ ݆ ൌ 2, . . . , ݅        ,݌ ൌ 2, . . . , ݉      ,ሼ݈ሽ\݌ ൌ ݅ if ݅ ൏ ݈ ,       ݉ ൌ ݅ െ 1 if ݅ ൐ ݈, and ߙ is normalized by ߙԢߙܣ ൌ െߣ.  
If these conditions are satisfied,  f achieves an extremum in the interior region of the ߙ domain. A full search need to be carried out over all possible ݈.  
C) A third possible solution is given for ߙ at the boundary, i.e. ߙ ൌ ሺܿ, ܿ, . . . , ܿሻԢ  such that the usual normalization condition ߙԢߙܤ ൌ 1 is satisfied. 
In order to find the optimum solution, the canonical correlation is determined for all possible solutions and the best is chosen.  
Methods 
FMRI was performed in a 3.0T GE HDx MRI scanner equipped with an 8-channel head coil and parallel imaging acquisition using the following parameters: 
ASSET=2, ramp sampling, TR/TE=2sec/30ms, FA= 70deg, FOV=22cmx22cm, thickness/gap=4mm/1mm, 25 slices, in-plane resolution 96x96 interpolated to 128x128. 
We acquired three fMRI data sets. The first data set was collected during resting-state where the subject tried to relax and refrain from executing any overt task with 
eyes closed. The second data set was collected while the subject was performing an episodic memory paradigm. Briefly, this paradigm consisted of memorization of 
novel faces paired with occupation, containing 6 periods of encoding, distraction, and recall tasks (slices parallel to the long axis of hippocampus). The third data set 
was obtained from a conventional motor task (axial slices, four 30 sec periods with on/off finger tapping). We computed activation maps and modified ROC curves 
using real (non simulated) data as outlined in [4] by estimating the fraction of positives from activation data and the fraction of false positives (FFP) from resting-state 
data. Furthermore, as a measure of performance we computed the area under the ROC curves (aROC), integrated over FFP∈[0,0.1]. As local neighborhood for CCA we 
use every 3x3 in-plane pixel patch and compute CCA for all 256 configurations involving the center voxel and its 8 neighbors. 
Results 
In Fig.1 below (from left to right), we show the activation pattern for the memory paradigm for the contrast 
encoding-distraction at a p-value of 10-5 for single voxel GLM, single voxel GLM with Gaussian smoothing 
(FWHM 2.3 pixels), CCA with constraint #1, CCA with constraint #4. In Fig.2 (right) we show aROC bar graphs 
for both motor (green) and memory data (yellow) for (from left to right) single voxel GLM, single voxel with 
Gaussian smoothing, unconstraint CCA, CCA with constraints #1, #3, and #4. Notice that the improvement in 
detecting activations is about 13-17% larger for CCA with constraint #4 compared to CCA with constraint #1.  
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