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Introduction Motion corrupts EPI time-series data through both voluntary and involuntary 
movements.  The standard deviation of the motion typically varies over a range of .2 to 1.1 
mm [1,2] in healthy adult subjects.  Motion of this magnitude perturbs the steady-state 
magnetization thereby increasing the temporal variance.  This variance can be reduced using 
restraint methods, image realignment, and exclusion of subjects with excessive motion but it 
is nevertheless a major source of variance.  We propose a model that can be used to optimize 
sequence parameters, validate it using phantoms, and draw conclusions about optimal 
parameters. 
Methods. For sufficiently small motions, the effect on the steady state magnetization can be 
approximated by the first two terms of its Taylor series expansion to yield the result that 
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where b(z)=cosθ(z)exp(-∆t/T1), ∆t is the TR, Mss is the steady state magnetization, and f(z) is 
a complex-valued function describing the mapping of Mss into the transverse plane. If the 
pulsatile motion is small and the physiological noise constant, the model can be simplified to 

  
σ 2 = SNR −2 = σ0

2 + g2σ z
2 .  The motion variance, σz

2 was estimated from motion covariates 
computed with AFNI as the variance of the motion of a point at coordinates (5,5,5) cm 
relative to the center of rotation.  This variance overestimates the through-slice component of 
motion by including all three axes but underestimates sub-pixel and sub-TR motions due to 
insensitivity of the correction to small movements.  The model in Eq (1) was computed using 
the Stanford Bloch equation simulator [3] for a spectral-spatial excitation pulse (GE software 
version ESE12M4). The simplified model was fit to data from an autism study averaged over 
central white matter regions in 63 juvenile subjects aged 14.7+/-4.5 years (GE 3T Signa, 
TR/TE=2000/30, flip=90,  4/1mm). (This population samples large σz well).  White matter 
regions were used to minimize the effects of CSF and pulsatile motion. A similar analysis 
was applied to 175 EPI runs in 41 normal 18 year-old subjects to characterize the effect of 
noise in low-motion subjects.  The model was validated by acquiring data from a silicone oil 
phantom (TR=990ms) using an EPI sequence modified to randomly translate the slice 
prescription at each frame.  This enables repeated runs with the same motion variance but 
different sequence parameters.  Phantom data were acquired on a GE MR750 3T scanner 
with the same parameters. 
Results.  The analysis of data in normal 18 year-olds shows that small increases in σz from 
.05mm to .1mm results in a 30% reduction in observed temporal SNR (TSNR) and that σz > 
.1mm for 40% of subjects.  Figure 1 shows that the simplified model fits well in white matter 
regions. The estimated value of g is .0249 +/- .0028 (r=.87) compared to an analytical value 
of .0180.  This suggests that the motion variance is underestimated by 28%.  The motion 
sensitivity computed for two ranges of integration in Equation (1) is compared to phantom 
results in Figure 2. The predicted motion sensitivity is nearly constant if Equation (1) is integrated only over the central lobe of the slice profile 
(w=7mm) but increases with flip angle when integrated over the sidelobes (w=60mm).  The phantom data support the latter result, suggesting that a 
significant fraction of the noise due to motion comes from the sidelobes for high flip angles.  Comparison of phantom results and analytical results 
for the effect of flip angle on TSNR for three levels of subject motion show that the model accurately predicts the optimum flip angle.  For typical 
noise levels (σz=.125) a ten degree deviation from the optimum flip angle yields an 11% decrease in TSNR.  Computing Eq (1) over a range of inter-
slice gaps predicts that motion sensitivity increases with decreasing slice thickness and increasing inter-slice gaps.   
Conclusions. i) Motion significantly increases time-series variance even in low-motion subject populations.  ii) The variance component due to 
motion is proportional to the spatial derivative of the steady-state magnetization; iii) The sidelobes of the slice profile contribute disproportionately to 
this variance at high flip angles; iv) The optimum flip angle can be computed if the variance of the underlying motion is known; v) This variance can 
be approximated from motion parameters estimated during image realignment; vi) Gaps between slices increase sensitivity to motion while 
simultaneously reducing signal and should be zero.  The methodology presented here can be used to optimize protocol parameters for specific 
scanners, RF pulses, and subject populations. 
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Figure 1. Fit of simplified model to measured 
variance in human subjects. 

 
Figure 2. Comparison of g measured in a phantom 
and values predicted with two value of w in Eq (1). 

Figure 3. Comparison of predicted TSNR and 
TSNR measured in a phantom. 
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