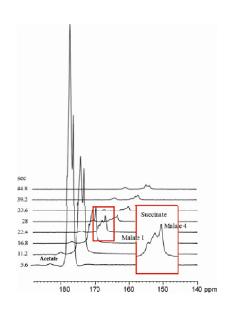
Imaging TCA Cycle Metabolism by PHIP Hyperpolarization of ¹³C Succinate In Vivo

N. Zacharias Millward¹, W. Perman², B. Ross¹, and P. Bhattacharya¹

¹Enhanced Magnetic Resonance Laboratory, Huntington Medical Research Institutes, Pasadena, CA, United States, ²Saint Louis University


<u>Purpose:</u> The objective of this work was to overcome inherent insensitivity of *in vivo* MR by demonstrating metabolic imaging of reactions of the Krebs Tricarboxylic Acid Cycle *in vivo* using PHIP (Parahydrogen Induced Imaging) method of hyperpolarization [1,2]. While DNP with pyruvate demonstrated early on the potential for visualizing several sequential steps of metabolism with retention of hyperpolarized spins, to the best of our knowledge, because no 'metabolizable' molecule was available, TCA cycle metabolic imaging has never been observed with the alternative technology of PHIP.

Methods: ¹³C deuterated fumarate was hydrogenated by parahydrogen and rhodium-catalysis to 1-¹³C succinate and hyperpolarized to 8±2% before tail-vein injection into tumor-bearing mice. ¹³C hyperpolarized signals were recorded at 3 second intervals over 120 seconds. A second injection was performed to permit high speed ¹³C *in vivo* imaging of the anatomic distribution of all hyperpolarized signal with reference to the underlying implanted tumor. 30 studies were performed in each of two (N=15) distinct tumor models, the renal cancer (RENCA) and a Lymphoma A20 with the goal of enhancing the likelihood of detecting onward hyperpolarized metabolism of succinate.

A. RENCA: renal cancer

sec 50.4 44.8 39.2 33.6 28.0 22.4 16.8 5.6 200 160 150 130 120 110 100 ppm

B. Lymphoma A20

Figure A: Metabolic products of hyperpolarized ¹³C-succinate in RENCA tumor in a living mouse using MRS. 3M non-polarized ¹³C-acetate phantom was used as a chemical shift reference. **B**: Metabolic products from hyperpolarized 1-¹³C succinate in Lymphoma A20 tumor bearing mice.

Results: After injection of hyperpolarized 1-¹³C succinate, the substrate was observed in all spectra acquired during the putative ¹³C T₁ of hyperpolarized succinate. Whereas in prior studies with PHIP no hyperpolarized metabolites were observed, hyperpolarized metabolic products were detected with 20,000 fold increased sensitivity in all 30 of the *in vivo* trials reported here, with secondary hyperpolarized metabolites observed over 3 – 5 minutes (Figure). ¹³C images produced during the T₁ of hyperpolarized succinate and/or its metabolites showed restricted distribution of intravenously delivered succinate within the implanted tumors, and occasionally beyond their anatomic boundaries as defined by synchronous ¹H MRI. The metabolic fate of hyperpolarized ¹³C succinate differed in the two tumor populations (N=15): in RENCA renal carcinoma metabolic products malate C1 and C4, fumarate C1, glutamate C1 and citrate C6 were defined; and in Lymphoma A20 the hyperpolarized metabolic products were limited to ¹³C malate C1 and C4 (Figure). The differences in metabolic profile were tentatively assigned to the presence of hypoxia inducing factor HIF1α in Lymphoma A20 which is absent from RENCA. Finally, since hyperpolarized ¹³C succinate chemical shift is pH sensitive, some function of intra-tumor pH may be recovered from these data.

<u>Conclusion:</u> Hyperpolarized MR effectively images ¹³C intermediates of the Krebs TCA cycle using PHIP with potential for preclinical and clinical application in cancer molecular imaging. In a prior report from this Laboratory, metabolites were observed in *in vivo* brain tumor – but only after they had returned to Boltzmann equilibrium [3].

References:

- 1. Bhattacharya P et al. Ultra fast Steady State Free Precession Imaging of Hyperpolarized ¹³C In Vivo. Magn Reson Mater Phy 2005; 18:245-256.
- 2. Bhattacharya P et al Towards Hyperpolarized ¹³C Succinate Imaging of Brain Cancer. J Magn Reson 2007; 186:108-113.
- 3. Chekmenev EY et al. PASADENA Hyperpolarization of Succinic Acid for MRI and NMR. J Am Chem Soc 2008; 130:212-4213.