M. Narazaki¹, Y. Kanazawa², H. Ikehira², and T. Matsuda¹ ¹Kyoto University, Kyoto, Japan, ²National Institute of Radiological Sciences, Chiba, Japan ## Introduction The tissue oxygenation status depends on the oxygen supply and consumption. The oxygenation status in tumor is a very important factor for the effective treatment and the progression¹. Recently, ¹⁷O imaging for metabolically generated $H_2^{17}O$ from inhaled ¹⁷O₂ has been shown to be useful for CMRO₂ measurement ²⁻⁴. To obtain the regional oxygen consumption rate in the tumor, we have developed ¹⁷O imaging by FISP and succeeded in mapping the distribution of injected $H_2^{17}O$ in mice with a temporal resolution of 10 sec⁵. In this study, the oxygen consumption rate after ¹⁷O₂ gas inhalation was evaluated by the ¹⁷O imaging in the tumor bearing mice. ## Methods MRS/MRI was performed on Biospec 70/20 USR (Bruker) with 40 mm 1 H/ 17 O Litz coil (Doty Scientific Inc.). The colon 26 adenocarcinoma cells (1*10⁶ cells) were s.c. inoculated into the right shoulder of BALB/cA mice (22-25 g). The tumor (ca. 0.5~1.0 mm³) bearing mice were anesthetized by i.p. injection of chloral hydrate anesthesia (400mg/kg). The oxygen gas enriched to 50% 17 O (ISOTEC) was supplied to the mask attached to the mouse head at the rate of 50 mL/min for 2 minutes. 17 O images of the mice were obtained every 20 seconds during the 17 O₂ inhalation and following 13 min by true FISP with TR/TE = 4.3/2.15 ms or 3/1.5 ms. After the imaging experiment, organs were excised for 17 O spectral quantification. Water and saline phantoms, ranging 2 to 26 g, were used for the calibration of 17 O spectral and image intensities for quantification. ## **Results & Discussion** The inhalation of $^{17}O_2$ gas raised the signal intensity in ^{17}O images within the experimental time scale. Fig.1 shows the coronal FISP ^{17}O -Images of a tumor bearing mouse acquired by 5 min data acquisition before and 25 min after the inhalation of $^{17}O_2$ gas. The increase in the signal intensity was 1.26 and 1.33 times of baseline in brain and tumor, respectively: $H_2^{17}O$ production from inhaled $^{17}O_2$ could be followed up by ^{17}O images. The increment of summed ^{17}O image intensities was in good agreement with that of whole body spectra, which confirmed the image of this work quantitative. The quantity of $H_2^{17}O$ produced in the tumor was in the range of the value expected from the literature⁶. Fig. 1 ¹⁷O images of tumor bearing mouse obtained by 5 min data acquisition before and after 2min-50% ¹⁷O₂ inhalation. ## Conclusion ¹⁷O imaging of water is qualified as a powerful tool for regional oxygen consumption rate. **References:** 1. Menon C. et al, Cancer Lett 221:225 (2005), 2. Zhu XH. et al, MRM 45:543 (2001), 3. Fiat D. et al, Neurol Res 26:803 (2004), 4. Zhang N. et al, J Cereb Blood Flow Metab 24:840 (2004), 5. Narazaki M. et al. 14th ISMRM 3113 (2006), Narazaki M. et al, 15th ISMRM 1338 (2007), 6. Thews O. et al, Adv Exp Med Biol 471:525 (1999).