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INTRODUCTION Data analysis in MRI is sophisticated and can be thought of as a “pipeline” of closely connected 

processing and modeling steps. Because noise in MRI data affects all subsequent steps in this pipeline, e.g., from noise 

reduction and image registration to parametric tensor estimation [1] and uncertainty assessment [2],  accurate noise 

assessment has an important role in MRI studies. Noise assessment in MRI usually means the estimation of noise variance 

(or standard deviation (SD)) alone [3-8]. Here, we will demonstrate that (I) the identification of noise, which has not 

received much attention in MRI literature, is as important as—if not more important than—the estimation of noise standard 

deviation (SD), (II) the identification of noise and the estimation of noise SD can be combined into a single coherent 

framework of noise assessment, and (III) this framework can be made self-consistent, that is, it can be turned into a fixed 

point (iterative) procedure. To this end, we propose a novel approach to simultaneously identify noise and estimate the 

noise standard deviation from a commonly used data structure (see Fig. 1) in MRI.   

METHODS It is known that magnitude MR signals, m, obtained from an N-receiver-coil MRI system [9] follow a 

nonCentral Chi distribution of 2N degrees of freedom [8,10] and the PDF of noise in magnitude MR images can be derived 

from the nonCentral Chi distribution. By making a change of variables in the PDF of noise, it can be shown that the new 

variable follows a particular type of the Gamma PDF, i.e., Gamma(N,1) [11]. Due to the reproductive property of the 

Gamma distribution [12], the arithmetic mean, denoted by s, of K independent measurements of the new variable is again a 

Gamma random variable of a different type, i.e., Gamma(NK,1/K). The identification of noise is carried out 

probabilistically by specifying the lower and upper threshold values (respectively, λ−( α, N, K) and λ+( α, N, K) ) of s for a 

given probability level α, which can be computed readily from the cumulative distribution function (CDF) of s. The 

estimation of the standard deviation of Gaussian noise is based the median method, which can be derived by equating 

μ2/(2σ2) = λ(1/2, N, 1) and solving for σ in terms of μ and λ(1/2, N, 1); namely, σ = μ/√(2 λ(1/2, N, 1)). Note that λ(1/2, N, 

1) ≡ λ−( α, N, 1) =  λ+( α, N, 1) when α=1/2, μ is the median of the magnitude signals and σ is the standard deviation of the 

Gaussian noise. Note also that if N=1, which is the case for Rayleigh-distributed data, we have an analytical form for the 

standard deviation of the Gaussian noise, i.e., σ = μ/√(2ln2). The proposed method incorporates both the identification and 

estimation steps in a highly efficient and iterative framework, which is best described in a step-by-step manner as detailed 

in Fig. 2 where mijk are the noisy magnitude signals mentioned in Fig. 1. The proposed method can be made automatic by a 

systematic search for a good initial estimate of σ. This systematic search begins by finding an upper bound, M, of σ. Here, 

M is estimated from the whole volumetric data shown in Fig. 1 through the median method where μ is taken to be the 

sample median of the whole volumetric data. Next, the interval from 0 to M is subdivided to generate a set of points, 

},/)1(,,/2,/{ MlMllMlM −=Φ L  where l  is some positive integer, say 100. Each point in Φ  then serves as 

an initial solution. The best initial solution is the one that produces the highest number of positive identifications.  

RESULTS The proposed technique was tested with a set of human brain data acquired on a 1.5 Tesla scanner (GE Medical 
Systems, Milwaukee, WI) with an 8-channel phased array coil, i.e., N=8, using a single-shot spin-echo EPI sequence with 
the following parameters: FOV of 24cm x 24cm, 60 slices without gaps and with a slice thickness of 2.5mm, an image 
matrix of 96x96. Each diffusion weighted image dataset consisted of 2 (b=0 s/mm2) images and 12 (b=1100 s/mm2) images 
with different gradient directions so that  K=14 at each slice location, see left panel of Fig. 3. If we set α to 0.1, we have 
λ−=6.798 and λ+=9.282. For this particular slice location, the initial estimate of σ was found to be 0.0106 through the 

automatic search method with l=50. The final estimate of 0.0104 was obtained in 13 iterations in less than a second. Those 
regions that are classified as containing noise-only measurements are shown in white in the right panel of Fig. 3. In Fig.3, 
the histogram of noise was generated from the noise array produced by the proposed method and the probability density 
function with N=8 was generated from the estimated standard deviation of the Gaussian noise.  
DISCUSSION & CONCLUSION The proposed method takes advantage of the multiplicity of the images to increase the 
discriminative power of the identification of noise. The proposed method is general and can be adapted to other imaging 
sciences by using a different PDF and CDF of interest. An important application of this method is the assessment of noise 
in the brain region. Specifically, it can be used to evaluate the quality of images acquired using fMRI or high angular 
resolution diffusion imaging (HARDI) techniques [13]. In brief, it is shown that it is useful and logical to combine both the 

identification of noise and the estimation of noise variance into a single coherent framework of noise assessment.  
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Fig. 3. A diffusion-weighted image (left 
panel). A binary mask indicating noise-
only pixels in white (right panel). The 
proposed method was applied to all 14 
images (2 non diffusion-weighted + 12 
diffusion-weighted images). The 
histogram of noise was generated from 
the noise array produced by the proposed 
method and the probability density 
function with N=8 was generated from 
the estimated standard deviation of the 
Gaussian noise. 
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Magnitude images acquired 
under different experimentally 
controlled conditions but 
at the same slice location.  

Fig. 1. The proposed technique is 
specifically designed to take advantage 
of the data structure shown above. 
Many MRI protocols produce this type 
of data structure; notably, fMRI and 
diffusion MRI. 

 
Fig. 2. The algorithm of the proposed 
technique. 
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