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Introduction: Segmentation of MR images into regions of differing relaxivities (R, and R,) is usually performed with data intensities' and parametric maps’ as primary
features. At low SNR, the efficacy of these features decreases. In this study, we propose a strategy to derive robust primary features to overcome this difficulty and
show that these can either replace or supplement the ones currently used.

Method: We assume that the time series at each pixel location of Tj-and T,-weighted data can be modeled as f; and f,, respectively (eqns.1, 2, shown below). The
proposed strategy is based on the observation that, the fewer the parameters we need to estimate from a time series, the smaller the variability’. R, and R, mapping
involve estimation of both A and A. Suppose we pretend that we know A at a pixel location, we are left with a linear problem of estimating A, to approximate f. We
hypothesize that the pixel-wise least-squares-fit error due to an assumed A (A,) and an estimated A can discriminate regions with differing relaxivities better than the is
estimated by R, and R, mapping. By varying kA, over a set A, created from apriori knowledge, we form a set of “Model error maps” (MEMs). By MaxRel*, mRMR* and
F-score’ feature selection studies, we show that families of such error maps can be more useful starting materials for supervised or unsupervised segmentation than
intensities or parametric maps. In our study, two functions of least-squares error are used, ¥; and ¥, (eqns.4, 5), closely related to ¥, (eqn.3), the log-likelihood

function of hypothesis testing for the alternate hypothesis f, or f, with parameter A,. f denotes f; with estimated A, for a given A,. We analyze the proposed method

under both Gaussian and Rician noise models (Gnm and Rnm, respectively). We use Maximum Likelihood (ML) estimators® for R; and R, mapping and for estimating
A to obtain MEMs. Under Gnm, the ML estimator of A is equivalent to the MVU?. MLEs under Rnm need knowledge of noise variance, which we assumed we knew
(in practice, they can be estimated from noise-only samples). The MLEs were based on simplex minimization with 20 random starts.

Experiments: Using R; maps of brains of in-vivo adult male Wistar rats scanned at 4.7T (28 points (N) scanned with §; of 0.15s), we obtained R; values typically
found in white and gray matter, basal nuclei and arteries (denoted as Ay inFig.1). For every LE Ay, we generated 10° time series (fi) with same N and t; at a specified
SNR by adding Rician noise (6°=0.1, A depended on SNR). We associated class labels to each time series based on the underlying .. Thus, we constructed a 5 class
dataset with 10° realizations for each class. These data were used to estimate the R, values and MEMs from ¥, and ¥, by assuming Gnm first and Rnm next. Thus we
had 94 measurements for each time series- 28 intensities+2 R, values (assuming Gnm and Rnm)+32 ¥, values (16 each for Gnm and Rnm with .,€ A,;)+32 ¥, values
(similar to V). We then analyzed the ability of these measurements in being able to discriminate the 5 underlying classes by treating them as features, and ranking them
according to 3 feature selection criteria. The study was repeated at 4 SNRs ((<A>/6)=5,8,12,20) and with data combined from all SNRs (to simulate coil sensitivity
variation). Similar studies were performed on T,-weighted data, but with model f,, N=12, &t.=0.015s and L,& A,,. In this case, we were left with 78 features since we
had only 12 intensities.

Results: Fig.1 shows top 50 ranks obtained by the features in both studies under various conditions. Darker regions denote better features (black= Rank 1). R, and R,
denote parametric maps, and ¥; denote MEMs obtained with ;. Each strip of F-score/MaxRel/mRMR has 5 horizontal sub-strips. The first four correspond to
increasing SNR, while the fifth is the result obtained from the combined study (denoted as ¢ in mRMR strip). Thus, in both studies, each feature was ranked 15 times
(5SNRx3 Ranking criteria). T;-weighted data studies showed that 13 out of 15 times, an MEM features claimed the top rank. R; mapping under Gnm ranked the best
twice, but under the relatively less reliable F-score, and only at high SNRs (12, 20). Choosing the right noise model made a difference in this study, especially at low
SNR. In studies on T,-weighted data, the R, maps performed poorly in comparison to MEMs (best rank was 17). The MEM features ranked the best again, except for
one case, endorsing our hypothesis. At low SNR, results from both studies indicate that we benefit by combining intensities with MEMs. The two most important
results form this study are (i) that all ranking methodologies rate MEMs far higher than scaled intensities and R; and R, maps in both the studies, under all SNRs,
clearly corroborating our hypothesis (unscaled intensities gave poorer results) and (ii) that the choice of A,; were not as critical as their range. Fig.2 shows results of k-
means clustering (14 clusters) a T,-weighted dataset with two different feature sets. The first used 16 MEMs (¥, on A,|) and the second used intensities (N=28) in
conjunction with R; map (all under Gnm). With nearly half the number of features, MEMs gave less noisy segmentation. Fig.3 shows similar results with 5 clusters
from a T,-weighted dataset (N=12) which had low SNR, with 3 feature sets. The first used16 MEMs (¥, on A,,), the second used intensities with R, map and the third
result used only intensities. Clearly, we see that MEMs show less unwanted spatial variations compared to the second result, as expected, and recognize the lesion in the
basal nuclei clearly. With intensities alone, the lesion could not be discerned. Though k-means is not a bench mark segmentation algorithm, we used it to confirm our
hypothesis, that MEMs can be very effective primary features for segmentation. As an independent set of features, or as supplements to intensities and parametric maps,
these offer promising applications, given the fact that there may be more to gain by choosing the right A,; and more importantly, other ¥s. The demonstration of this

possibility is the main contribution of this work. R
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