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Introduction: Segmentation of MR images into regions of differing relaxivities (R1 and R2) is usually performed with data intensities1 and parametric maps2 as primary 
features. At low SNR, the efficacy of these features decreases. In this study, we propose a strategy to derive robust primary features to overcome this difficulty and 
show that these can either replace or supplement the ones currently used. 
Method: We assume that the time series at each pixel location of T1-and T2-weighted data can be modeled as f1 and f2, respectively (eqns.1, 2, shown below). The 
proposed strategy is based on the observation that, the fewer the parameters we need to estimate from a time series, the smaller the variability3. R1 and R2 mapping 
involve estimation of both A and λ. Suppose we pretend that we know λ at a pixel location, we are left with a linear problem of estimating A, to approximate f. We 
hypothesize that the pixel-wise least-squares-fit error due to an assumed λ (λv) and an estimated A can discriminate regions with differing relaxivities better than the λs 
estimated by R1 and R2 mapping. By varying λv over a set Λv created from apriori knowledge, we form a set of “Model error maps” (MEMs). By MaxRel4, mRMR4 and 
F-score5 feature selection studies, we show that families of such error maps can be more useful starting materials for supervised or unsupervised segmentation than 
intensities or parametric maps. In our study, two functions of least-squares error are used, Ψ1 and Ψ2 (eqns.4, 5), closely related to Ψ0 (eqn.3), the log-likelihood 
function of hypothesis testing for the alternate hypothesis f1 or f2 with parameter λv. f̂ denotes fi with estimated A, for a given λv. We analyze the proposed method 

under both Gaussian and Rician noise models (Gnm and Rnm, respectively). We use Maximum Likelihood (ML) estimators6 for R1 and R2 mapping and for estimating 
A to obtain MEMs. Under Gnm, the ML estimator of A is equivalent to the MVU3. MLEs under Rnm need knowledge of noise variance, which we assumed we knew 
(in practice, they can be estimated from noise-only samples). The MLEs were based on simplex minimization with 20 random starts. 
Experiments: Using R1 maps of brains of in-vivo adult male Wistar rats scanned at 4.7T (28 points (N) scanned with δti of 0.15s), we obtained R1 values typically 
found in white and gray matter, basal nuclei and arteries (denoted as Λf1 in Fig.1). For every λ∈Λf1, we generated 103 time series (f1) with same N and δti at a specified 
SNR by adding Rician noise (σ2=0.1, A depended on SNR). We associated class labels to each time series based on the underlying λ. Thus, we constructed a 5 class 
dataset with 103 realizations for each class. These data were used to estimate the R1 values and MEMs from Ψ1 and Ψ2 by assuming Gnm first and Rnm next. Thus we 
had 94 measurements for each time series- 28 intensities+2 R1 values (assuming Gnm and Rnm)+32 Ψ1 values (16 each for Gnm and Rnm with λv∈Λv1)+32 Ψ 2 values 
(similar to Ψ1). We then analyzed the ability of these measurements in being able to discriminate the 5 underlying classes by treating them as features, and ranking them 
according to 3 feature selection criteria. The study was repeated at 4 SNRs ((<A>/σ)=5,8,12,20) and with data combined from all SNRs (to simulate coil sensitivity 
variation). Similar studies were performed on T2-weighted data, but with model f2, N=12, δte =0.015s and λv∈Λv2. In this case, we were left with 78 features since we 
had only 12 intensities. 
Results: Fig.1 shows top 50 ranks obtained by the features in both studies under various conditions. Darker regions denote better features (black= Rank 1). R1 and R2 

denote parametric maps, and Ψi denote MEMs obtained with Ψi. Each strip of F-score/MaxRel/mRMR has 5 horizontal sub-strips. The first four correspond to 
increasing SNR, while the fifth is the result obtained from the combined study (denoted as c in mRMR strip). Thus, in both studies, each feature was ranked 15 times 
(5SNRx3 Ranking criteria). T1-weighted data studies showed that 13 out of 15 times, an MEM features claimed the top rank. R1 mapping under Gnm ranked the best 
twice, but under the relatively less reliable F-score, and only at high SNRs (12, 20). Choosing the right noise model made a difference in this study, especially at low 
SNR. In studies on T2-weighted data, the R2 maps performed poorly in comparison to MEMs (best rank was 17). The MEM features ranked the best again, except for 
one case, endorsing our hypothesis. At low SNR, results from both studies indicate that we benefit by combining intensities with MEMs. The  two most important 
results form this study are (i) that all ranking methodologies rate MEMs far higher than scaled intensities and R1 and R2 maps in both the studies, under all SNRs, 
clearly corroborating our hypothesis (unscaled intensities gave poorer results) and (ii) that the choice of Λvi were not as critical as their range. Fig.2 shows results of k-
means clustering (14 clusters) a T1-weighted dataset with two different feature sets. The first used 16 MEMs (Ψ1 on Λv1) and the second used intensities (N=28) in 
conjunction with R1 map (all under Gnm). With nearly half the number of features, MEMs gave less noisy segmentation. Fig.3 shows similar results with 5 clusters 
from a T2-weighted dataset (N=12) which had low SNR, with 3 feature sets. The first used16 MEMs (Ψ2 on Λv2), the second used intensities with R2 map and the third 
result used only intensities. Clearly, we see that MEMs show less unwanted spatial variations compared to the second result, as expected, and recognize the lesion in the 
basal nuclei clearly. With intensities alone, the lesion could not be discerned. Though k-means is not a bench mark segmentation algorithm, we used it to confirm our 
hypothesis, that MEMs can be very effective primary features for segmentation. As an independent set of features, or as supplements to intensities and parametric maps, 
these offer promising applications, given the fact that there may be more to gain by choosing the right Λvi and more importantly, other Ψs. The demonstration of this 
possibility is the main contribution of this work. 
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Λv2={0,1.8,4.3,5.2,6.8,9.3,11.8,14.3,14.7,15.6,16.9,18.83,19.3,21.8,25,30.8} Λv1={0,0.1,0.2,0.35,0.45,0.5,0.55,0.65,0.77,0.85,0.91,0.95,1.05,1.15,1.5,2} 

Fig.1  

mRMR 

Gaussian Rician Rician Gaussian 

 
Intensities R1 R1 Ψ1 Ψ2 Ψ1 Ψ2 Intensities R2 R2 Ψ1 Ψ2 Ψ1 Ψ2 

F-score 

MaxRel 

5 
8 

12 
20 c 

T1-weighted data study Λf1={0.93,0.77,0.91,0.50,0.65} T2-weighted data study Λf2={18.83,15.60,16.90,5.20,30.08} 

SNR 

Fig. 3 Clustering results for     
T2-weighted data. left-MEMs     
Center-Intensities+R2 map, 
right-Intensities    

Fig.2 Clustering results for     
T1-weighted data. left- MEMs, 
right-Intensities+R1 map 
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