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Introduction: Magnetic resonance (MR) imaging with an endorectal coil is a standard clinical procedure for prostate cancer diagnosis. The balloon used with
the endorectal coil is typically inflated to as high as 100 cc for optimal coupling of the coil with the prostate gland, and minimizing movement of the gland
during the image or spectral acquisition. However, this method of acquisition deforms the prostate from its native state while images and spectra are obtained.
For optimum delivery of radiation dose to the areas of cancer, the information obtained in the deformed state needs to be transformed back to its native state.
Registration methods that have been proposed to date [1,2] are either rigid or non-rigid and compressible, neither of which accounts for the true nature of the
prostate deformation [3]. In this work we constrained the deformation field to be incompressible, and developed an incompressible landmark-based image
matching method using the large deformation diffeomorphism (LDD) framework [4], and applied it to transform the deformed prostate to its native state.

Methods: Our method matches manually specified landmarks on the deformed and non-deformed prostate images using large deformation diffeomorphism
(LDD) framework. Given N landmark pairs ( (X,,y,), N =1,...,N, the LDD finds a diffeomorphism ¢(x,t) that maps any point x in the source image to its
position y in the target image such that te [0,1] and ¢(x,0)=x, @(X,1)=y. The velocity field v(x,t) at time t is defined as the time derivative of g(x,t).
Unlike the small deformation interpolation, the LDD does not constrain directly the displacement field. Instead, it computes the velocity fields that minimizes
the quadratic energy function E(v)= Hmﬂ Lv(x,)||* dx dt and satisfies ¢(x,,1)=Yy,, n=1,...,N, where L is a differential operator. The deformation field is
finally computed by integrating v over t. In addition, the velocity field of an incompressible object is divergence free everywhere. A vector spline solution
was previously proposed [5] to interpolate a divergence-free vector field. The vector spline minimizes the energy function J(v)= 'f|| Veurl (v(x))||* dx with the
constraint div(v(x))= 0, where div() and curl() are the vector divergence and curl respectively. It has been shown that the kernel matrix of this differential

operator is K(X)={-A+VVT}h(| x|)), where h(r)=r*logr for two dimensions and h(r)=r" for three dimensions. By incorporating the divergence-free
vector spline into the LDD framework we reformulated the problem as: finding .

the  velocity ~field  V(xt)=argmin I Iveurl ety dxdt — that ;i Standard LDD

satisfies div(v(x))=0and ¢(x,,1)=Yy,, n=1..N. The velocity V(x,t) and the ?I D—~_8

mapping ¢(x,t) are then solved using discrete time points and iterative gradient I AT PSS | st
descent [4]. We call this the incompressible LDD method. | o LTI
Results: Figure 1 demonstrates the method using a numerical example that has 2~ ™=+ ¢ ¢« = « *# ———
matching points and 4 fixed corner points, as shown in Fig. la. In Figs. la & d, - @ . (b) ©
points A and B move to C and D respectively. Figs. la-c show the results of  Incompressible LDD

standard LDD, and Figs. 1d-f are the results of the proposed incompressible LDD D, ‘

method respectively. In (a) and (d), the red lines show the trajectories of points  ° B :

using the two different methods. Fig. 1b & e shows the final deformation using ¢ € :

deformed grids. Fig. 1c & f are the vector flow of the displacement fields. It is = A

clear that the grid areas are not preserved in the standard LDD solution, while b e D N T A A A A - .
they are preserved in the incompressible LDD solution. The incompressibility of (d) (e) ®

the mesh produces a vortex in the displacement field (shown in Fig. 1f).

We also applied our incompressible LDD method on three T2-weighted prostate
datasets (3mm slice thickness, TE/TR 80/3000ms) to transform the deformed
prostate images to their native state. For each dataset one image volume was
acquired with the coil inserted but with no air in the balloon (Fig. 2a), while the
other was acquired when the balloon was inflated with 60cc air. These images
were then matched using small deformation registration (thin-plate spline),
standard LDD, and incompressible LDD methods, and the results were compared.
Fig. 2 shows the results on one of the datasets. The red crosses mark the
landmark points chosen. In Fig 2, (a) is the non-deformed image, (b) shows the
deformation computed using standard LDD, while (c) shows results of
incompressible LDD. We also computed the determinants of Jacobian of the
motion field, which is shown in Fig. 3. Figs. 3a-c are the results of
incompressible LDD, standard LDD, and thin-plate spline interpolation
respectively. The determinant of the Jacobian indicates the local volume change.
For an incompressible object, its value remains 1 everywhere. From Fig. 3 we ()
can see the deformation produced by incompressible LDD retains this property, .

while in the standard LDD and the small deformation registration, the volume L LD i Ll

change can be as high as 30%. Fig.3 Determinant of Jacobian of deformation field
Conclusion: In this work we developed a landmark-based prostate MR image registration method using incompressible large deformation diffeomorphism.
By enforcing the divergence-free condition on the velocity fields the final deformation field is a true reflection of the physical property of prostate. Although
the current implementation of this method is limited to 2D images, an extension to 3D is currently under development. In the future we will also include the
application of incompressible LDD method to motion estimation and interpolation of incompressible moving tissues, for example, the heart and the tongue.
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