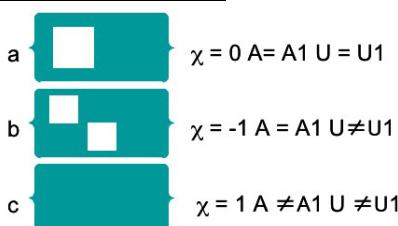


Characterization of Image Heterogeneity using Minkowski Functionals

H. C. Canuto^{1,2}, M. I. Kettunen^{1,2}, C. I. McLachlan³, A. S. Krishnan¹, A. A. Neves^{1,2}, D-E. Hu¹, M. P. Hobson^{3,4}, and K. M. Brindle^{1,2}


¹Biochemistry, The University of Cambridge, Cambridge, Cambridgeshire, United Kingdom, ²Cancer Research UK, Cambridge, Cambridgeshire, United Kingdom,

³Metropolis Data Consultants, Cambridge, Cambridgeshire, United Kingdom, ⁴Astrophysics, Cavendish Laboratory, The University of Cambridge, Cambridge, Cambridgeshire, United Kingdom

Introduction

Measurements of cell death following drug-treatment are a good prognostic indicator for treatment outcome¹⁻⁴ and therefore we have been developing targeted MR contrast agents that bind to apoptotic cells and which can be used to image tumor cell death post-treatment⁵⁻⁷. More recently we have exploited the spatially heterogeneous nature of cell death in tumors to enhance the sensitivity of detection of one of these agents. We showed that by analyzing the heterogeneity of contrast agent binding that we could increase the sensitivity of detection of the agent and hence of tumor cell death⁸. Since tissue morphology is a very sensitive indicator of underlying tissue biology⁹, we reasoned that we might also be able to apply this analysis to detect tumor response to treatment in the absence of any contrast agent. By simply parameterising, using 2D Minkowski Functionals (MFs), the morphological heterogeneity present in a T₂-weighted MR image of a tumor before and after drug-treatment, we have shown that we can detect a treatment response in the absence of contrast agent. 2D MFs have been widely used in cosmology as precise morphological and structural descriptors which have been used in the study of the evolution and morphology of galaxies and clusters of galaxies¹⁰⁻¹³. The recent observation that gadolinium-containing MRI contrast agents can cause the debilitating and sometimes fatal condition Nephrogenic Systemic Fibrosis (NSF) in patients with renal dysfunction¹⁴ has cast some doubt on the further development of Gd³⁺-based agents. Our approach could provide a viable alternative to contrast agent-based methods.

Materials and Methods

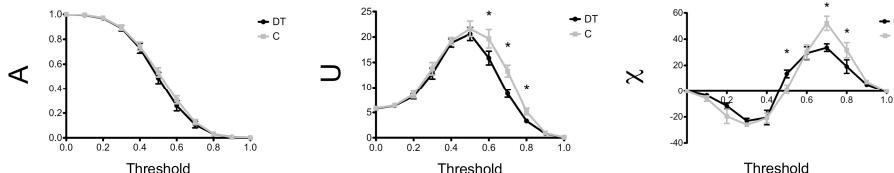


Fig. 1: The Minkowski Functionals: Area (A), Perimeter (U) and Genus (χ) used to describe simple shapes.

All MR imaging experiments were performed at 9.4T. Mice bearing EL4 murine lymphomas were either untreated or treated, by i.p. injection, with 67 mg/kg etoposide and then imaged 24 h later. T₂-weighted images (TR=1 s, TE=35 ms, FOV=35x35 mm, data matrix 256x128, slice thickness 1 mm) were acquired from the tumors. Tumors were manually segmented from multiple transverse slices from drug-treated (n=5, total number of slices = 53) and control animals (n=5, total number of slices = 47) with a contiguous non-square region extracted with standard image manipulation software. In the calculation of 2D MFs each tumor intensity value was linearly remapped onto the uniform interval 0 to 1. Tumor images were then converted to binary datasets by thresholding each image as a function of gray scale. Ten threshold steps were chosen to account for gray level variation, giving 11 thresholded images per slice. In each thresholded image the visible pixels were considered in the computation of the MFs.

MFs were calculated by software developed by Metropolis Data Consultants. The software calculates the three MFs area, perimeter and genus as a function of the image threshold. A schematic (Fig. 1) illustrates the MFs for simple objects. The MFs were also renormalized to remove any dependence on the total number of pixels in an image.

Results

Fig. 2: 2D MFs are shown as a function of 11 gray-scale threshold levels from T₂-weighted images acquired without contrast agent.

The 2D MFs were computed for gray-scale threshold levels in the range 0 to 1.0 inclusive (Fig. 2). The area (A) calculated as a function of gray-scale threshold showed no significant differences between drug-treated and control animals. The perimeter (U) values in the threshold range from 0.6 – 0.8 and the genus (χ) values in the threshold range 0.5 and 0.7 - 0.8 were significantly different for control as compared to drug-treated animals. In particular, in the threshold range 0.7-0.8, the genus was significantly higher for control compared to drug-treated animals, in this case indicating a more statistically homogeneous morphology in the control tumors.

Conclusions

We are developing an automated image analysis tool to sensitively and quantitatively detect changes in tissue architecture that report changes in underlying tissue biology following chemotherapeutic treatment. Unlike other image analysis methods, 2D MFs provide an automated and reliable method of image analysis, which does not require prior assumptions about the number of regions or features in the image.

References

- 1) Ellis PA, Smith IE, McCarthy K, Detre S, Salter J, Dowsett M: Lancet 1997, 349:849 2) Meyn RE, Stephens LC, Hunter NR, Milas L: Anticancer Drugs 1995, 6:443-450 3) Dubray B, Breton C, Delic J, Klijanienko J, Maciorowski Z, Vielh P, Fourquet A, Dumont J, Magdelenat H, Cosset JM: Radiother Oncol 1998, 46:185-191 4) Chang J, Ormerod M, Powles TJ, Allred DC, Ashley SE, Dowsett M: Cancer 2000, 89:2145-2152 5) Zhao M, Beauregard DA, Loizou L, Davletov B, Brindle KM: Nat Med 2001;7(11):1241-1244. 6) Krishnan AS, Neves AA, de Backer MM, Hu DE, Davletov B, Kettunen MI, Brindle KM: Radiology 2008;246(3):854-862. 7) Neves AA, Krishnan AS, Kettunen MI, Hu DE, de Backer MM, Davletov B, Brindle KM. A paramagnetic nanoprobe to detect tumor cell death using magnetic resonance imaging. Nano Lett 2007;7(5):1419-1423. 8) Canuto HC, McLachlan C, Kettunen MI, Velic M, Krishnan AS, Neves AA, de Backer MM, Hu DE, Hobson MP, Brindle KM: Accepted Magnetic Resonance in Medicine 2008. 9) Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, Chan BK, Matcuk GR, Barry CT, Chang HY, Kuo MD: Nat Biotechnol 2007, 25:675-68
- 10) Shmalzing J, Buchert T. Beyond genus statistics: The Astrophysical Journal 1997;482:L1-L4. 11) Schmalzing J, Gorski KM. Minkowski Functionals used in the Morphological Analysis of Cosmic Microwave Background Anisotropy Maps. Monthly Notices of the Royal Astronomical Society 1997;000:1-14. 12) Schmalzing J, Kerscher M, Buchert T:1995; Varenna, Italy. 13) Michelsen K, Raedt HD: Physics Reports 2001;347:461-538. 14) Lauenstein TC, Salman K, Morreira R, Tata S, Tudorascu D, Baramidze G, Singh-Parker S, Martin DR: J Magn Reson Imaging 2007, 26:1198-1203