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Introduction 
Magnetic resonance diffusion tensor imaging provides a 3×3 2nd order tensor of water diffusion based on acquired diffusion weighted images (DWI). Eigenvectors of 
the diffusion tensor can be exploited to characterize tissue micro-structure and architecture. However, diffusion tensor images (DTI) usually have poor signal-to-noise 
ratio (SNR) because they use single-shot echo-planar imaging sequences. High image noise causes problems such as erroneous calculation of the principal diffusion 
direction (PDD) (2). To reduce the noise, we have developed a non-iterative anisotropic filtering algorithm for smoothing DTIs. The performance of this method has 
been evaluated on human 3D data acquired at 3T.  
 
Method 
1. Log-Euclidean framework for tensor computing 
Diffusion tensors (symmetric positive definite matrices) constitute a manifold instead of a vector space, so tensor computing in a Euclidean framework may cause some 
tensors to go out of the manifold. Thanks to a recently proposed Log-Euclidean framework (3), tensor processing can be converted into simple and efficient Euclidean 
computing for vectors by transforming the tensor manifold to tensor logarithm space. A diffusion tensor D is mapped to L in tensor logarithm space by L = log (D) (Eq. 
1), while L can be inversely transformed back to the tensor manifold by D = exp (L) (Eq. 2) after being processed. 
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2. Non-iterative anisotropic filtering for multi-channel images 
The anisotropic diffusion smoothing we propose is governed by Eq.3 above, where Im is the image intensity in channel m and T is a structure tensor that provides the 
directionality of smoothing.  T is properly constructed from a common gradient tensor G (Eq. 4) so that smoothing along the boundaries is encouraged and smoothing 
across them is discouraged. Eqn. 3 is solved with an unconditionally stable and second order accurate semi-implicit scheme, which allows us to choose a very large step 
size. An optimal effect can be achieved by only one iteration, which actually turns the iterative diffusion filtering to a non-iterative one.  
3.     Outline of DTI anisotropic smoothing in the Log-Euclidean framework 
To summarize, the anisotropic DTI denoising procedure can be described by the following diagram: 

 
 
Experiments and Results 
DTIs were acquired in vivo with a 3T Philips Achieva MR scanner with 32 non-collinear weighting directions (b = 1000 s/mm2), which generated a volume of 
256×256×120 mm3 at an isotropic resolution of 2×2×2 mm3. Ten repeated scans were co-registered and averaged to yield a “clean” volume with an SNR of ~75. A 
block of seven slices in this clean dataset was corrupted with zero mean Gaussian noise at standard deviation (SD) = 5%, 10% and 15% times the DWI intensity for 
smoothing tests. The middle slice of the test block was chosen for quantitative evaluation. The effectiveness of anisotropic smoothing was assessed by the root mean 
square (RMS) angular difference in PDD with respect to clean data, and time efficiency was evaluated on the basis of  computation time on a COMPAQ laptop (Mobile 
AMD Sempron 2800). Fig. 1 (a-c) displays that disarranged PDDs have been greatly restored by one iteration of anisotropic smoothing with structure boundaries well 
preserved. Fig. 1 (d) shows that it takes only one iteration (~100 seconds) to gain the optimal PDD improvement of 29%, 44% and 52% for noise at SD = 5%, 10% and 
15% respectively with our anisotropic filter.  
 

 
        (a)    (b)        (c)    (d) 
Fig. 1 (a) An enlarged view of PDDs in a region of interest (ROI) within the clean data. The line segment represents the PDD orientation. (b) PDDs in the ROI 
corrupted with zero mean, SD = 15% Gaussian noise. (c) PDDs in the ROI after one iteration of anisotropic smoothing. (d) The variations with computation time of 
RMS angular difference in PDD over the whole middle slice. 
 
Conclusion and Discussion  
We have developed a technique to denoise DTIs by performing non-iterative anisotropic smoothing in a Log-Euclidean framework. The presented method achieves 
great computational efficiency mainly due to the non-iterative multi-channel anisotropic filtering process. In addition, directly smoothing DTIs is more efficient than 
smoothing DWIs in that only 6 components need to be processed for each voxel in DTI while DWIs usually contain more than 7 channel images. However, our method 
is specific to a Gaussian diffusion model (i.e. tensor model) and needs to be extended to apply to non-Gaussian diffusion models. 
Acknowledgements 
This work was supported by NIH grants RO1EB02777 and RO1EB000461. 
Reference 
1. Basser, PJ. Biophys J. 1994; 66: 259–267   2. Anderson, AW. Magn. Reson. Med. 2001; 46: 1174–1188.  3. Arsigny V. Magn. Reson. Med 2006; 56: 411-421. 

DWI 
tensor reconstruction 

D L Smoothed L 
L = Log (D) D = Exp (L) 

Denoised D 
9-channel non-iterative 
anisotropic smoothing 

where    (1) where   (2)    (3)  (4) 

Proc. Intl. Soc. Mag. Reson. Med. 17 (2009) 4677


