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I ntroduction

Magnetic resonance diffusion tensor imaging provides a 3x3 2™ order tensor of water diffusion based on acquired diffusion weighted images (DWT). Eigenvectors of
the diffusion tensor can be exploited to characterize tissue micro-structure and architecture. However, diffusion tensor images (DTI) usually have poor signal-to-noise
ratio (SNR) because they use single-shot echo-planar imaging sequences. High image noise causes problems such as erroneous calculation of the principal diffusion
direction (PDD) (2). To reduce the noise, we have developed a non-iterative anisotropic filtering algorithm for smoothing DTIs. The performance of this method has
been evaluated on human 3D data acquired at 3T.

Method

1. Log-Euclidean framework for tensor computing

Diffusion tensors (symmetric positive definite matrices) constitute a manifold instead of a vector space, so tensor computing in a Euclidean framework may cause some
tensors to go out of the manifold. Thanks to a recently proposed Log-Euclidean framework (3), tensor processing can be converted into simple and efficient Euclidean
computing for vectors by transforming the tensor manifold to tensor logarithm space. A diffusion tensor D is mapped to L in tensor logarithm space by L = log (D) (Eq.
1), while L can be inversely transformed back to the tensor manifold by D = exp (L) (Eq. 2) after being processed.
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2. Non-iterative anisotropic filtering for multi-channel images

The anisotropic diffusion smoothing we propose is governed by Eq.3 above, where |, is the image intensity in channel m and T is a structure tensor that provides the
directionality of smoothing. T is properly constructed from a common gradient tensor G (Eq. 4) so that smoothing along the boundaries is encouraged and smoothing
across them is discouraged. Eqn. 3 is solved with an unconditionally stable and second order accurate semi-implicit scheme, which allows us to choose a very large step
size. An optimal effect can be achieved by only one iteration, which actually turns the iterative diffusion filtering to a non-iterative one.

3. Outline of DTI anisotropic smoothing in the Log-Euclidean framework

To summarize, the anisotropic DTI denoising procedure can be described by the following diagram:
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Experiments and Results

DTIs were acquired in vivo with a 3T Philips Achieva MR scanner with 32 non-collinear weighting directions (b = 1000 s/mm?), which generated a volume of
256x256x120 mm® at an isotropic resolution of 2x2x2 mm’. Ten repeated scans were co-registered and averaged to yield a “clean” volume with an SNR of ~75. A
block of seven slices in this clean dataset was corrupted with zero mean Gaussian noise at standard deviation (SD) = 5%, 10% and 15% times the DWI intensity for
smoothing tests. The middle slice of the test block was chosen for quantitative evaluation. The effectiveness of anisotropic smoothing was assessed by the root mean
square (RMS) angular difference in PDD with respect to clean data, and time efficiency was evaluated on the basis of computation time on a COMPAQ laptop (Mobile
AMD Sempron 2800). Fig. 1 (a-c) displays that disarranged PDDs have been greatly restored by one iteration of anisotropic smoothing with structure boundaries well
preserved. Fig. 1 (d) shows that it takes only one iteration (~100 seconds) to gain the optimal PDD improvement of 29%, 44% and 52% for noise at SD = 5%, 10% and
15% respectively with our anisotropic filter.
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Fig. 1 (a) An enlarged view of PDDs in a region of interest (ROI) within the clean data. The line segment represents the PDD orientation. (b) PDDs in the ROI
corrupted with zero mean, SD = 15% Gaussian noise. (c) PDDs in the ROI after one iteration of anisotropic smoothing. (d) The variations with computation time of
RMS angular difference in PDD over the whole middle slice.

Conclusion and Discussion

We have developed a technique to denoise DTIs by performing non-iterative anisotropic smoothing in a Log-Euclidean framework. The presented method achieves
great computational efficiency mainly due to the non-iterative multi-channel anisotropic filtering process. In addition, directly smoothing DTIs is more efficient than
smoothing DWIs in that only 6 components need to be processed for each voxel in DTI while DWIs usually contain more than 7 channel images. However, our method
is specific to a Gaussian diffusion model (i.e. tensor model) and needs to be extended to apply to non-Gaussian diffusion models.
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