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INTRODUCTION 
Inhomogeneity of the magnetic field during the acquisition of MR images results in a smooth variation of intensities within the image referred to as bias field. This 
artefact complicates not only the further processing of the images, such as tissue segmentation or registration, but also affects visual assessment if the intensity variation 
becomes very pronounced. Modern MR scanners operating at 3T or higher field strengths enable the acquisition of images with higher resolution at shorter scanning 
times. However, these images are also corrupted by stronger bias fields. Many standard bias correction methods (such as N3 [1]) are not effective in the presence of 
strong bias field. We propose a novel template-based bias correction method, which estimates the bias field by adjustment to an aligned and intensity-matched template 
image. Images acquired at lower magnetic field strength with a birdcage receiver coil with smaller bias fields can easily be corrected by more conventional means and 
therefore provide suitable templates. The method has been applied to 35 paediatric brain MR images with strong bias field, acquired on a 3T MR scanner. 
 
METHOD 
Subjects: T1-weighted MR images of 35 prematurely born children at the age of two years were acquired on a Phillips 3T scanner using a MP RAGE imaging sequence 
and reconstructed with voxel size 0.8 x 0.8 x 0.8 mm3. T1-weighed MR image of a two year old subject acquired on a 1.0T HPQ system (Philips Medical Systems), 
reconstructed with voxels size 1.6 x 1.035 x 1.035 mm3 was used as a template image, after bias correction using the N3 method [1]. 
Pre-processing: In the first stage the background voxels in each image were removed using tresholding followed by dilation, erosion and a region growing procedure. 
The template image was aligned with each subject using affine registration with normalized mutual information as a similarity measure [2]. A linear intensity 
transformation of the aligned templates was then performed to match intensity means and variances of the corresponding image. 
Estimating the bias field: The multiplicative low-frequency model was exploited to estimate the bias field. A residual image was calculated as )/log( iii xyr = , where ri, 

xi and yi denote the intensities of voxels in residual image, template image and image to be corrected, respectively. As the bias field β has low-frequency characteristics, 
it can be modelled as 3D cubic tensor-product B-spline with control points Dj: ∑= j ijji ND )(uβ  where Nj denotes 3D cubic tensor-product B-spline basis function and 

ui is the spatial location of the voxel βi. The bias field was estimated by a least-square fit to the residual image: ∑ −=
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mismatched tissue content was reduced by assigning lower weights wi. The weights and bias field were calculated iteratively: 1. The residual image was bias corrected 
using the latest estimate of the bias field. A soft classification (a vector of posterior 
probabilities for each voxel, determining the probability of a voxel belonging to a tissue 
class) of the bias corrected residual image was calculated by fitting a mixture of two zero-

mean Gaussians using the EM algorithm [3]: a Gaussian with small variance 2
smallσ  

represented the voxels with the same tissue content and a Gaussian with large variance 
2
largeσ  represented the mismatched voxels. 2. The weights were calculated using the 

formula 2
,
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classification. 3. The control points for the bias field can then be calculated from equation 

WRNWNDN TT =  using singular value decomposition [4]. Here the matrix N is 

composed of elements )( ijij NN u= , W is a diagonal matrix of the weights wi, R is a 

vector of intensities ri and D is a vector of B-spline control points. The steps are repeated 
until convergence. 
For the purposes of evaluation four images were segmented using EM segmentation [5] with a 
population-specific atlas [6] before and after bias correction with different B-spline control 
point spacings. The automatic segmentations were compared with manual segmentations on 7-8 
slices including white matter and cortical grey matter using the Dice metric [7]. 
 
RESULTS 
The graph shows the agreement between manual and automated segmentation as a function of 
B-spline control point spacing. Control point spacing between 75 and 50mm produced the best 
results. A comparison of an original image (a) and the corresponding corrected image (b) with 
the segmentation result superimposed is shown on the right.  The segmentation of the original 
image shows a distortion resulting from central brightening in the image caused by the bias 
field. The segmentation of the image corrected with the B-spline control point spacing 75mm 
shows considerable improvement.   
 (a) (b) 
CONCLUSION                 
We propose a template-based bias correction method based on weighted least-square B-spline fitting to estimate the bias field. We have shown that the method is highly 
effective on brain MRI with strong intensity inhomogeneity. The advantage of the method is its general applicability not only to MR images of the brain, but any organs 
for which a template image is available. In addition, the use of robust statistics in form of weighted least squares ensures that the method is robust to registration error. 
Only affine alignment is required to produce good results, which reduces computational demand, making the method efficient. 
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