PARAMAP: an Automated Imaging Analysis Tool for Quantitative CEST Molecular Imaging: Validation in vitro

J. Flament¹, B. Marty¹, S. Mériaux¹, J. Valette¹, C. Medina², C. Robic², M. Port², F. Lethimonnier¹, and F. Boumezbeur¹

¹NeuroSpin, I2BM, Commissariat à l'Energie Atomique, Gif-sur-Yvette, France, ²Research Division, Guerbet, Roissy-Charles de Gaulle, France

Fig.1. 3D asymmetrical Z-spectrum for [Eu³⁺]DOTAMGly exhibiting variation of the %CEST effect for different B1 intensities and saturation offset frequencies.

Fig.2. Comparison of %CEST effects within each tube before (open red dots) and after correction for B₀- and B₁induced errors (open green dots) to the expected %CEST effect (blue dots). The errors are reported in the box at the top-left corner.

Fig. 3. Color coded quantitative PARACEST concentration (C) map after corrections for B₀ and B₁ inhomogeneities (top left corner and top right corner). The mean concentrations calculated in each tube are given explicitly (in mM).

Introduction

Recently, a new class of paramagnetic contrast agent has been developed for Chemical Exchange Saturation Transfer (PARACEST) magnetic resonance imaging [1-3]. Since visualizing CEST contrast requires two measurements with B_1 saturation applied on-resonance (at $+\delta$, frequency of the shifted bound water) and off-resonance (at - δ), CEST imaging is sensitive to inhomogeneities in both B₀ and B1 fields. Therefore, in order to generate quantitative CEST maps, it is important to elaborate correction algorithms to get rid of errors induced by B_0 and B_1 fields. In this study, we proposed to use a numerical simulation of the CEST contrast mechanism based on the Bloch equations modified for chemical exchange incorporating B_0 and B_1 dependencies [4]. The efficiency of our analysis tool was verified in vitro.

Materials and Methods

MRI acquisition. Experiments were realized on a 7 T small animal MRI scanner (Bruker, Ettlingen, Germany) using a bird-cage 3-cm-diameter ¹H coil for acquisition and reception. CEST images were acquired with a RARE sequence (TE/TR=80/5500 ms; turbo factor 32) preceded by a CW saturation pulse being applied at \pm 50ppm (T_{sat}=400ms, B_{1sat}~20µT). B₀ and B₁ maps were acquired separately using a GE sequence (TE=5, 7.5, 10, 15ms; TR=300ms, flip angle of 30° and 60°). In vitro tests were performed on a 6-tubes phantom each containing [Eu³⁺]DOTAM-Gly (Guerbet, Roissy, France; concentrations of 0.5, 1, 2.5, 5, 7.5, 10 mM) [3] embedded in a low-gelling point 4% agarose matrix.

Z-spectra Simulation and Image Analysis with PARAMAP. Our image analysis tool designed as PARAMAP is a Matlab (The MathWorks Inc., Natick, MA) based program aiming at correcting the B₀ and B1 induced errors on the native CEST image (I_{CEST}=(I_{ON}-I_{OFF})/I_{REF}). Briefly, PARAMAP simulates for each pixel **r** a series of asymmetric Z-spectra using $B_1(\mathbf{r})$ and $B_0(\mathbf{r})$ values with the concentration C as a variable (aMTR(C, \mathbf{r})). The others parameters of the simulation (k_{ex} , δ , T_1 and T_2 of both pools) are extracted from experimental Z-spectra of [Eu³⁺]DOTAM-Gly (data not shown). The concentration map $C(\mathbf{r})$ is then calculated from the minimization of the cost function: $|I_{CEST}(\mathbf{r})-aMTR(C,\mathbf{r})|$.

Results and Discussion

As illustrated by the figure 1, field inhomogeneities manifest themselves strongly on the amplitude of the observed CEST effect for a given concentration. Therefore a 10% error on B_{1sat} leads to a 4% overor under-estimation. Similarly, a 100Hz frequency error leads to a 1% over- or under-estimation. In our experiment, B_0 et B_1 inhomogeneities were quite modest as illustrated (standard deviations: $\sigma_{B0}=21$ Hz and $\sigma_{B1}=0.5\mu$ T), yet without correction, the calculated %CEST effect (Fig.2, open red dots) is quite different to the %CEST effect expected (blue dots). If not corrected, discrepancies between the known and the estimated concentrations are on average of 0.8mM. The B_0 and B_1 corrections (green line) improve significantly the quantitativity of the established PARACEST concentration map with an averaged over-estimation of 0.3 mM (See Fig.3).

Conclusion

CEST agents are promising new contrast agents for MR molecular imaging since they allow to reach nanomolar sensitivity [5]. Yet, their susceptibility to parameters such as B_0 , B_1 is a real issue to achieve truly quantitative CEST imaging. In this study, we validated in vitro PARAMAP, a home-made software aimed at correcting not only for B_0 and B_1 field inhomogeneities. Ultimately, quantitative PARACEST concentration maps were obtained within a reasonable margin. To move further toward in vivo quantitative CEST imaging, we are actually extending the simulation to a 4-site chemical exchange model similar to the one described by Li et al. [6].

The software will be available at: http://groups.google.com/group/paramap .

Acknowledgments Grant sponsor: Iseult/Inumac French-German Project. References

- 1. Ward KM et al., J Magn Reson 2000;143:79
- 3. Aime S et al., MRM 2002;47:639
- 2. Zhang S et al., Acc Chem Res. 2003;36:783 4. Woessner DE et al., MRM 2005;53:790
- 6. Li AX et al., MRM 2008;60:1197

5. Terreno E. et al., CMMI 2008;3:38