
A Kalman filtering framework for prospective motion correction 
 

J. Maclaren1, O. Speck2, J. Hennig1, and M. Zaitsev1 
1Dept. of Diagnostic Radiology, Medical Physics, University Hospital Freiburg, Freiburg, Germany, 2Biomedical Magnetic Resonance, Otto-von-Guericke University, 

Magdeburg, Germany 
 

Introduction: Prospective motion correction is becoming a feasible means of overcoming the problem of patient motion in brain imaging. Navigator data from a 
tracking system is used to update the scanner gradients, and therefore the position of the imaging volume, before every spin excitation. Regardless of the tracking system 
used, accuracy is a critical factor as any position noise results in image artefacts [1]. Thus, position errors must be minimised. Due to latency in the system, one should 
also predict the position of the object at a certain time, ,tΔ  in advance. Finally, an estimate of residual position errors would be useful for post-processing correction. 
The goal of this work was to develop a pose prediction method based on Kalman filtering that reduces tracking noise and enables retrospective estimation of residual 
errors. The method was validated using simulated and experimental pose data from an optical tracking system (similar to that described in [2]). 
 
Method: The tracking system provides position and orientation 
information in six degrees of freedom (6DOF); the Kalman filter, 
predictor and smoother (Fig. 1) are applied to each DOF separately. 
 

The filtering problem involves finding an estimate, ˆ ,tx of the true signal 
state, ,tx given noise-corrupted measurement data, noise.t tz x= + The 
Kalman filter [3] is one such approach and is optimal in a mean 
squared error sense.  Here, we use a position-velocity (PV) model, 
meaning that for each DOF the state contains position and velocity 
information (Fig. 2a).  Following a standard Kalman filtering approach 
[4], the initial estimate of the next state is given by 1ˆ ˆ ,t tx Ax−

−=  where 
A is the transition matrix. Given the latest measurement, tz , the 
updated estimate of the state is then given by 
ˆ ˆ ˆ( ),t t t t tx x K z Hx− −= + − where K is the Kalman gain (Fig. 2d) and H is 

the measurement matrix (Fig. 2b), indicating that position is the 
measured parameter, not velocity.  
 
Given the estimate ˆtx  at time t, the state value at time point t + Δt is 
predicted. The current best estimate of velocity and position is used to compute ˆt tx +Δ (Fig. 2b) for the 
latency time, 33mstΔ = , which is approximately equal to the time taken to acquire two camera frames. 
Finally, a forward-backward Kalman smoother [5] was implemented to obtain the best possible estimate 
of subject motion after the scan, to enable correction of residual errors in post-processing. The post-
processing stage is currently only implemented for in-plane translational motion and functions by 
correcting phase information in k-space.  
 
When applied to real data, no ‘ground truth’ is available with which to compare the results. Therefore we 
have performed simulations with known values of kx , but with randomly generated measurement noise.  
 
Results and Discussion: Fig. 3 presents results of the post-processing stage. Fig. 4a shows simulated 
filtering results. True position data (green) are plotted against measured data (red) and the output of the 
Kalman smoother (black). The mean absolute error (MAE) between the measured values and the true 
signal is 41 μm (a realistic value for our tracking system); this is reduced to 13 μm between the Kalman 
smoother output and the true signal. Thus, the smoothed output accurately estimates the true signal and is 
therefore suitable for using to predict residual errors. 
 
Fig. 4b shows real data (red) obtained from a human subject at a sample rate of 60 Hz. Values are 
predicted 33 ms in advance using the filter described here (blue). Kalman smoother results are shown for 
comparison (black). The MAE between the smoothed estimates and the predicted estimates is 25 μm. 
Subtracting the smoothed results from the predicted results gives an estimate of errors made during 
prospective correction. These data can then be used for post-processing. 
 
Although simulations indicate that the framework presented here is effective, a rigorous quantification of 
its performance using a tracking target with known motion is needed. This will also allow for improved 
optimisation of the filter parameters. Another limitation of this work is the lack of constraints concerning 
the possible values for head position, velocity and acceleration. This information should be 
incorporated. Due to the nature of the Kalman filter, this approach could also be used to 
optimally combine tracking information from different tracking systems, measuring different 
motion parameters. 
 
Conclusion: We have developed a pose prediction system based on Kalman filtering that 
reduces tracking noise and enables retrospective estimation of residual errors. This reduces the 
accuracy requirements of the tracking system itself. 
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 Fig. 2: (a) state representation, (b) measurement matrix, 
(c) predicted state, and (d) Kalman gain. P is the error 
covariance estimate and Q is the process variance matrix. 
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Fig. 1: Tracking system data is Kalman 
filtered and used to predict the position of 
the subject for the next acquisition. After 
scanning, the tracking data is compared to 
the output of a Kalman smoother to allow 
further correction in post-processing. 
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Fig. 3: Data acquired using a gradient echo sequence 
with erroneous position information. Left: uncorrected. 
Right: corrected using post-processing given knowledge 
of the position errors. 

Fig. 4: (a) Kalman smoother applied to simulated data; (b) Kalman 
predictor and smoother applied to real data with significant motion. 
Note the overshoot in predicted values caused by a velocity change. 
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