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Introduction: Prospective motion correction is becoming a feasible means of overcoming the problem of patient motion in brain imaging. Navigator data from a
tracking system is used to update the scanner gradients, and therefore the position of the imaging volume, before every spin excitation. Regardless of the tracking system
used, accuracy is a critical factor as any position noise results in image artefacts [1]. Thus, position errors must be minimised. Due to latency in the system, one should
also predict the position of the object at a certain time, At, in advance. Finally, an estimate of residual position errors would be useful for post-processing correction.
The goal of this work was to develop a pose prediction method based on Kalman filtering that reduces tracking noise and enables retrospective estimation of residual
errors. The method was validated using simulated and experimental pose data from an optical tracking system (similar to that described in [2]).

Method: The tracking system provides position and orientation
information in six degrees of freedom (6DOF); the Kalman filter,
predictor and smoother (Fig. 1) are applied to each DOF separately. l

The filtering problem involves finding an estimate, %, of the true signal
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Fig. 1: Tracking system data is Kalman
filtered and used to predict the position of
the subject for the next acquisition. After
scanning, the tracking data is compared to

state, X, given noise-corrupted measurement data, z = X, + noise. The |
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the output of a Kalman smoother to allow

squared error sense. Here, we use a position-velocity (PV) model,
meaning that for each DOF the state contains position and velocity
information (Fig. 2a). Following a standard Kalman filtering approach

Kalman filter [3] is one such approach and is optimal in a mean /

further correction in post-processing.
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[4], the initial estimate of the next state is given by X = AX_,, where | Kalman filter | Kalman smoother
A is the transition matrix. Given the latest measurement, 7z, the 7 post-pro!:essing
updated  estimate of the state is then given by

% =% + K, (z —H& ), where K is the Kalman gain (Fig. 2d) and H is | adjust gradients | ¢

the measurement matrix (Fig. 2b), indicating that position is the -

measured parameter, not velocity. | predictor |/ FINAL IMAGE
Given the estimate & at time t, the state value at time point t + At is

predicted. The current best estimate of velocity and position is used to compute %, 5 (Fig. 2b) for the

latency time, At=33ms, which is approximately equal to the time taken to acquire two camera frames. (a) x = { p} (© Konr :[1 tL} %

Finally, a forward-backward Kalman smoother [5] was implemented to obtain the best possible estimate v 01

of subject motion after the scan, to enable correction of residual errors in post-processing. The post-
processing stage is currently only implemented for in-plane translational motion and functions by
correcting phase information in k-space.

When applied to real data, no ‘ground truth’ is available with which to compare the results. Therefore we
have performed simulations with known values of X, , but with randomly generated measurement noise.

Results and Discussion: Fig. 3 presents results of the post-processing stage. Fig. 4a shows simulated
filtering results. True position data (green) are plotted against measured data (red) and the output of the
Kalman smoother (black). The mean absolute error (MAE) between the measured values and the true
signal is 41 pm (a realistic value for our tracking system); this is reduced to 13 um between the Kalman
smoother output and the true signal. Thus, the smoothed output accurately estimates the true signal and is
therefore suitable for using to predict residual errors.

Fig. 4b shows real data (red) obtained from a human subject at a sample rate of 60 Hz. Values are
predicted 33 ms in advance using the filter described here (blue). Kalman smoother results are shown for
comparison (black). The MAE between the smoothed estimates and the predicted estimates is 25 pm.
Subtracting the smoothed results from the predicted results gives an estimate of errors made during
prospective correction. These data can then be used for post-processing.

Although simulations indicate that the framework presented here is effective, a rigorous quantification of
its performance using a tracking target with known motion is needed. This will also allow for improved
optimisation of the filter parameters. Another limitation of this work is the lack of constraints concerning
the possible values for head position, velocity and acceleration. This information should be o
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Fig. 2: (a) state representation, (b) measurement matrix,

(c) predicted state, and (d) Kalman gain. P isthe error

covariance estimate and Q is the process variance matrix.

Fig. 3: Data acquired using a gradient echo sequence
with erroneous position information. Left: uncorrected.
Right: corrected using post-processing given knowledge
of the position errors.

incorporated. Due to the nature of the Kalman filter, this approach could also be used to ol A
optimally combine tracking information from different tracking systems, measuring different os
motion parameters.

Conclusion: We have developed a pose prediction system based on Kalman filtering that
reduces tracking noise and enables retrospective estimation of residual errors. This reduces the
accuracy requirements of the tracking system itself.
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Fig. 4: (a) Kalman smoother applied to simulated data; (b) Kalman
predictor and smoother applied to real data with significant motion.
Note the overshoot in predicted values caused by a velocity change.




