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Figure 1.  (a) Two simulated 1D coil profiles exhibit-
ing exponential decay (σ=0.6).  (b) SNR of the recon-
structed Shepp-Logan phantom for different values of 
σ using both SENSE and the hybrid CS+SENSE me-
thods. Note that the clear optimality peak in the CS re-
sult.  (c) Plot of the upper bound derived in (5) show-
ing that the probability that μ(E) exceeds some thre-
shold is minimal at roughly the same configuration 
yielding optimal SNR in (b).  (d)  Monte Carlo simula-
tion of μ(E) for 1000 random Fourier trials at each 
value of σ.  Note that the coil configuration yielding 
minimal μ(E) corresponds with the minimum of the 
bound in (c) and again the optimality peak in (b). 
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Introduction The marriage of Compressive Sensing (CS) [1,2,3] reconstruction techniques 
with multi-coil methods such as SENSE [4] offers a promising means for significantly accele-
rating MR image acquisition [5-11].  While there has been much theoretical analysis on the 
individual performance of these two methods, to date there has been only minimal investigation 
into the performance of the hybrid approach.  In this work, we investigate the theoretical per-
formance of the multi-coil CS framework and derive a relationship between signal recoverabili-
ty and certain properties of the coil sensitivity profile set.   
 
Theory Let Φ denote a K-point discrete Fourier transform (DFT) matrix and Γc be a diagonal 
matrix describing the cth coil sensitivity profile.  The undersampled parallel MR image acquisi-
tion process for an N-point image, f, is then typically defined by [4] 
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Now suppose the signal of interest, f, is (intrinsically) sparse, i.e. ||f||0=S << N.  If    
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where μ(E) is the mutual coherence (to be defined) of the sensitivity matrix E, then f can be 
exactly recovered using either the convex Basis Pursuit (ℓ1-minimization) or greedy Matching 
Pursuit algorithms [12,13].  While this bound is certainly not sharp, it is nonetheless clearly 
desirable to have as small a μ(E) as possible due to its inverse relationship with the number of 
recoverable coefficients.  Empirical optimization of sampling matrix coherence for single-
sensor systems has been previously considered [3,14,15].  When E is defined as in (1) for the 
case of parallel MRI, the coherence term can be defined and then algebraically separated as  
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where An denotes the nth column of A and the coil sensitivity profile set measure is defined as  

{ }[ ]( ) { }[ ]( )

{ }[ ]( ) { }[ ]( )∑∑

∑

==

=

Γ⋅Γ

Γ⋅Γ
=

C

c
c

C

c
c

C

c
c

H
c

pq

pdiagqdiag

pdiagqdiag

Q

1

2

1

2

1
,

 
(4) 

Note that Qq,p is essentially the coherence of the sensitivity profiles; however, unlike traditional 
coherence which is a spatial measure, this metric is across the channels at a fixed spatial posi-
tion.  When the K constituent frequencies (rows) of Φ are randomly sampled, one generally 
considers minimizing the probability that μ(E) exceeds a desired threshold τ rather than deter-
mining instance optimality.  Using the symmetric variant of McDiarmid’s bounded difference 
inequality [16], it can be shown that 
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As a consequence, coil sensitivities can, in theory, be optimized for CS-type reconstructions by minimizing the upper bound in (5), ensuring that the mutual coherence 
of the random measurement ensemble is below the prescribed threshold with high probability.  Similar bounds were also derived for the Gaussian and Bernoul-
li/Rademacher measurement ensembles commonly employed in the CS literature.   
 
Example Consider the simple example with two coils (C=2) exhibiting exponential falloff with a variable rate σ (e.g. Fig. 1a).  As σ →∞, the profiles tend towards 
spatial uniformity.  Fig. 1b shows the SNR reconstruction results for the noise-free Shepp-Logan phantom with ~6000 random Fourier coefficients and various σ’s using 
SENSE and ℓ1-minimization (with Haar wavelets).  Whereas SENSE is fairly invariant to coil falloff rate for most larger (and thus numerically stable) values of σ, the 
hybrid CS+SENSE method is distinctly optimal near σ=1.  For the same coil profile set used in Fig. 1b, Fig. 1c shows (5) with K = 128 and τ=0.5.  In this example, note 
that there is a clear minimum in the probability that the mutual coherence exceeds the prescribed threshold, and note that this minimum occurs proximal to coil parame-
terization yielding maximal SNR in Fig 1b.  Moreover, the Monte Carlo simulation of μ(E) (1000 randomly undersampled Fourier matrices for each tested σ) shown in 
Fig. 1d further confirms the ability of (5) to accurately predict the optimal coil configuration.    
 
Conclusion In this work we derived a new relation for signal recoverability via Compressive Sensing when it is applied to parallel MR image acquisition.  Both theo-
retical and empirical evidence suggest the potential of this bound model for future work in developing optimal coil configurations that will provide optimal image quali-
ty when employed in a CS reconstruction framework.     
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