

T_{1p} -Weighted MRI Senses Partial Pressure of Oxygen

D. R. Tailor¹, J. E. Baumgardner², W. R. Witschey³, and R. Reddy¹

¹Radiology, University of Pennsylvania, Philadelphia, PA, United States, ²Anesthesia, University of Pennsylvania, Philadelphia, PA, United States,

³Biochemistry & Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, United States

INTRODUCTION

Partial pressure of oxygen (P_{O_2}) is an important physiologic parameter, which has obvious implications in determining the cerebral metabolic rate of oxygen ($CMRO_2$) and the efficacy of radiotherapy, amongst several other functionally and clinically relevant examples. Particularly for determination of $CMRO_2$ via the hyperoxia approach suggested recently (1), a global brain arterial P_{O_2} is inferred from the end-tidal O_2 partial pressure since there is currently no method available for mapping P_{O_2} in the brain. In this study, we explore the sensitivity of T_{1p} -weighted imaging for changes in P_{O_2} in a controlled in vitro setting and compare it to the known effect of dissolved oxygen on T_1 and T_2 relaxation times. We also explore T_{1p} -weighted MRI detection of P_{O_2} changes in the brain by administration of increased FiO_2 to rats and human subjects.

METHODS

Five phantoms were prepared by adding 15 mL of physiologic saline to 20 mL syringes and balancing gas via a 5 mL syringe filled with appropriate mixture of oxygen and air to yield P_{O_2} of 279, 399, 520, 640, and 760 Torr with an accuracy of ± 1 Torr. These phantoms were positioned at an angle of 45° within a clinical extremity coil to allow for a slice through just the liquid portion of the mixtures and then imaged on a 1.5 T clinical MRI scanner. The T_2 , T_1 , and T_{1p} relaxation times were determined for the phantoms by using a spin echo sequence and varying the echo time, by a saturation recovery approach, and by varying the time of spin-locking length (at a spin-locking frequency of 250 Hz) via a prepared fast spin echo sequence, as previously described in detail (2), respectively.

Ten female Sprague-Dawley rats (200-300g) and 2 human subjects were studied on the 1.5 T clinical scanner in accordance with institutionally approved protocols and using the same T_{1p} sequence used for the phantoms, with $TR = 1$ s, $TE = 17$ ms, $TSL = 120$ ms, $ETL = 16$, and spin-locking frequency of 250 Hz. The rats were anesthetized with Nembutal® (50 mg/kg) and studied with a head coil specially designed for the application. For gas delivery to the rats, an inhalation mask and a calibrated custom-made ventilation system were utilized to vary FiO_2 from 20% to 100% with 20% increments, making up the remainder of the volume with nitrogen. The human subjects were studied with a clinical head coil. 40% FiO_2 was administered to the human subjects in the magnet via a clinical face mask and a patient tube extended to a wall-mounted hospital oxygen dispenser providing medical grade O_2 .

RESULTS AND DISCUSSION

Figure 1 provides the measured T_2 , T_{1p} , and T_1 relaxation times of each phantom with the given P_{O_2} . All exponential curvefits for determining these relaxation times resulted in correlation coefficients of 0.943 to 0.999. All three of these relaxation times demonstrate a linear relationship to P_{O_2} , with correlation coefficients equal to 0.997, 0.952, and 0.994, for T_2 , T_{1p} , and T_1 , respectively. The relaxation time difference between the highest and lowest P_{O_2} is 1.3 fold for T_2 , 4.3 fold for T_{1p} , and 2.8 fold for T_1 , suggesting that T_{1p} -weighting is most sensitive to P_{O_2} changes.

Figure 2 provides representative change in the normalized T_{1p} -weighted MRI signal, measured in a region of interest corresponding to the bilateral frontoparietal cortex of the rat, as a result of stepwise increase in FiO_2 . As expected from the phantom data, a highly linear relationship (correlation coefficient of 0.998) is seen between the T_{1p} -weighted signal and FiO_2 , which is expected to be linearly proportional to P_{O_2} . A representative T_{1p} -weighted signal change is also seen in a region of interest consisting of the bi-frontal human cerebral cortex due to increase in FiO_2 to 40% from room air.

Collectively, these data suggest that T_{1p} -weighted MRI is linearly sensitive to P_{O_2} , to an extent greater than that seen with both T_1 and T_2 relaxation. While it remains a focus of our present endeavors to tease out the optimal spin-locking frequency for P_{O_2} detection in the brain and other organs and to pursue a localized P_{O_2} map, the potential utility of T_{1p} -weighted imaging for monitoring inspired oxygen induced changes, specifically as they relate to the effect of dissolved oxygen, is readily apparent.

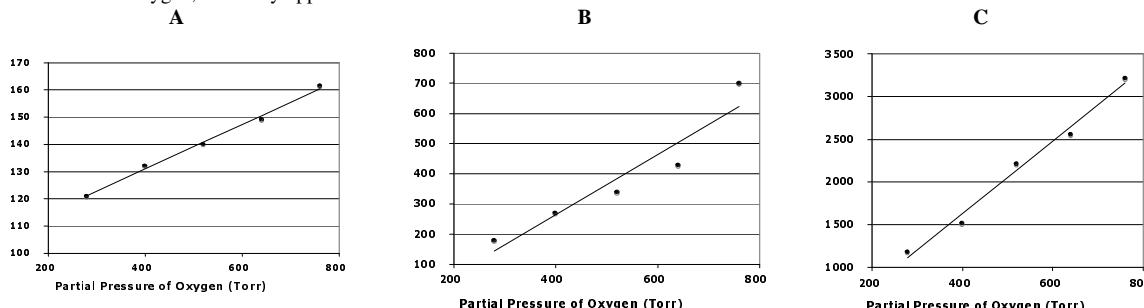


Figure 1: The effect of dissolved oxygen on A) T_2 , B) T_{1p} , and C) T_1 relaxation times of physiologic saline phantoms.

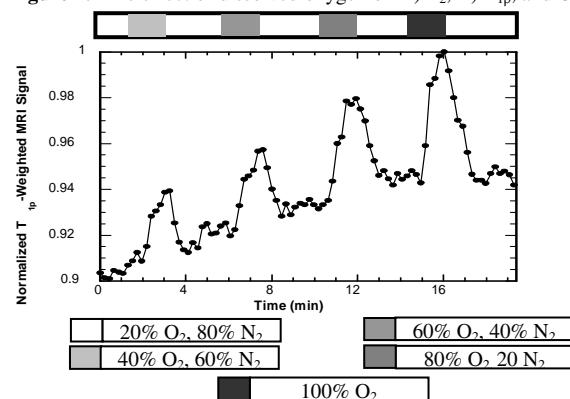


Figure 2: Representative T_{1p} -weighted brain MRI signal enhancement observed during sequentially incremented % respired O_2 (FiO_2) in rats.

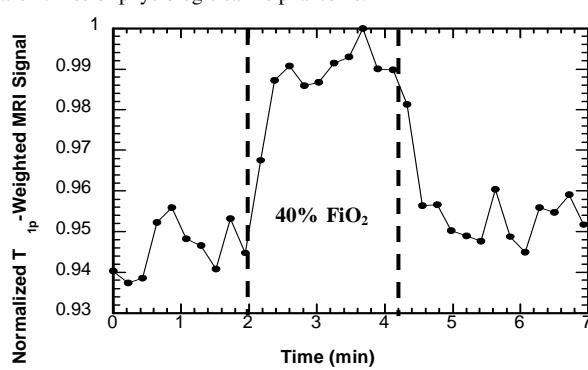


Figure 3: Representative human brain cortical signal enhancement observed with T_{1p} -weighted MRI during inhalation of 40% Oxygen. The vertical dashed lines mark the transition to and from room air to increased FiO_2 .

REFERENCES: 1. Chiarelli et al. (2007) NeuroImage; 37: 808-20. 2. Tailor et al. (2003) Magn Reson Med; 49: 479-87.