

Intra- and Inter-Scanner Variability of Magnetization Transfer Ratio Using Balanced SSFP

M. Gloor¹, K. Scheffler¹, and O. Bieri¹

¹Radiological Physics, University of Basel Hospital, Basel, Switzerland

Introduction. Magnetization transfer ratio (MTR) has become an important tool to study various tissue abnormalities, such as demyelination in brain white matter (1). Recently, a new technique for measuring MTR has been proposed based on balanced steady-state free precession (bSSFP) with modified radiofrequency pulses (2). In this study, the reproducibility and variability of MTR-bSSFP was analyzed on six healthy volunteers using two different 1.5 T clinical systems. Intra-scanner MTR measurements were well reproducible ($< \pm 0.3$ pu) and inter-scanner variation is below 0.4 pu for optimal flip angle settings ([pu]: percentage units).

Methods. All experiments were performed in 3D with sagittal orientation based on a 144×192×192 matrix yielding 1.3 mm isotropic resolution. Non-selective RF pulses were used with $T_{RF} = 150$ μ s (TR = 2.80 ms) and with $T_{RF} = 2100$ μ s (TR = 4.75 ms) for the MT-weighted and non-MT weighted bSSFP sequence, respectively. Using parallel imaging (acceleration factor of 2) and partial Fourier (6/8), a whole brain MTR scan was finished within 1:17 min. Flip angles α were varied from 35° to 55° in order to estimate B_1 sensitivity. Reproducibility of MTR was assessed with four consecutive acquisitions on the same healthy volunteer on two systems (system A: Siemens Avanto, system B: Siemens Espree). Before each scan, the subject was taken out of the scanner, repositioned (however, no care was taken to ensure that the position of the head was consistent), and a manual shim was performed. MTR variability between two scanners was assessed on six normal subjects. Values in four different regions of interest (ROIs: Fig. 1, left) were analyzed.

Results & Discussion. Reproducibility (intra-scanner variability) is characterized by standard deviations (SD) in the four consecutive MTR scans for several gray and white matter ROIs (exemplary curves in Fig. 1 a,b, and all results in Table 1). MTR values were highly reproducible (SD < 0.3 pu for $\alpha = 35^\circ$, SD < 0.4 pu for $\alpha = 40^\circ$ to 50° , and SD < 0.8 pu for $\alpha = 55^\circ$) for all regions of interest and on both systems. Variability in MTR between scans of the same subject on system A and B are calculated for each volunteer separately (exemplary curves in Fig. 1 c,d) and averaged values are listed in Table 2. Mean differences amounted to less than 0.4 pu for 35° , less than 1 pu for 40° , and less than 2.5 pu overall. As a result, flip angles near 35° to 40° are proposed to achieve highest intra-scanner stability and lowest inter-scanner variability. In addition, MTR-bSSFP is less sensitive to B_1 variations (less than 5% change in MTR for a 20% change in B_1) than standard methods using MT-prepared spoiled gradient echo (MT-SPGR: about 17% change in MTR for a 20% change in B_1) (3). In summary, our first results indicate low intra- and inter-scanner variability which might be a direct result of the simplified normalization procedure (no MT pre-pulses). Standardization of bSSFP for MTR scans using systems of different manufacturers and at different sites will be analyzed.

Conclusion. MTR scans with bSSFP can be optimized to yield low intra- and inter-scanner variability which might turn out to be superior to the one achieved with common MT-SPGR methods. Flip angles near 35° are proposed to achieve highest stability and lowest variability. MTR-bSSFP benefits further from relatively low B_1 sensitivity, high signal-to-noise ratios, and short overall acquisition times.

References. 1. Dousset et al., *Radiology* **182** (1992) 2. Bieri et al., *MRM* **58** (2007) 3. Ropele et al., *MRM* **53** (2005)

α [deg]	SD(MTR) ¹ [pu]		SD(MTR) ² [pu]		SD(MTR) ³ [pu]		SD(MTR) ⁴ [pu]	
	A	B	A	B	A	B	A	B
35	0.10	0.30	0.24	0.21	0.19	0.15	0.14	0.20
40	0.19	0.10	0.33	0.13	0.22	0.16	0.32	0.22
45	0.09	0.29	0.30	0.16	0.17	0.17	0.36	0.10
50	0.13	0.10	0.14	0.28	0.17	0.20	0.34	0.37
55	0.19	0.07	0.19	0.33	0.45	0.15	0.76	0.32

Table 1 (Intra-scanner variability): Standard deviations of four consecutive MTR scans on the same healthy volunteer with respect to flip angles α white (1,2: Fig. 1a,c) and gray (3,4: Fig. 1b,d) matter ROIs and scanners (A: Siemens Avanto, B: Siemens Espree).

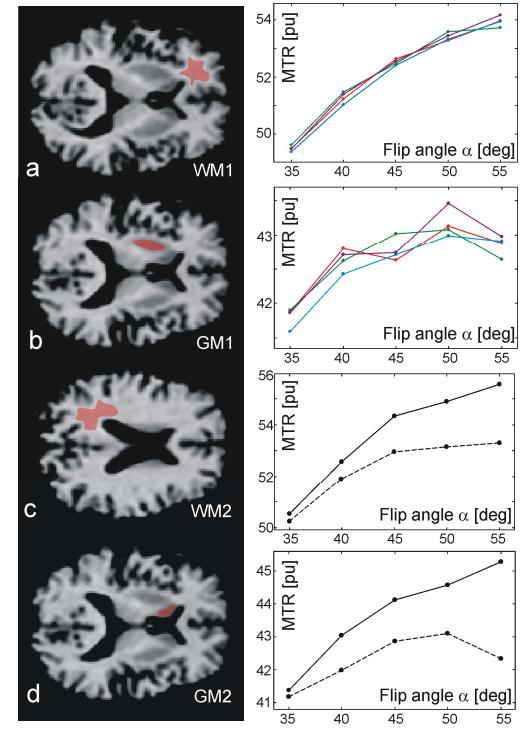


Fig. 1: Inter- and intra-scanner variability in MTR using bSSFP as a function of flip angle. Reproducibility was assessed with four consecutive acquisitions on the same healthy volunteer: (a) for frontal white matter (WM1) with scanner A (Siemens Avanto) and (b) for putamen (GM1) with scanner B (Siemens Espree). Scanner specific differences are shown for one volunteer (solid line: scanner A, dashed line: scanner B) (c) for occipital white matter (WM2) and (d) for caudate nucleus (GM2).

α [deg]	ΔMTR^1 [pu]	ΔMTR^2 [pu]	ΔMTR^3 [pu]	ΔMTR^4 [pu]
35	0.30 ± 0.19	0.34 ± 0.17	0.25 ± 0.21	0.29 ± 0.22
40	0.44 ± 0.29	0.53 ± 0.20	0.92 ± 0.29	0.84 ± 0.14
45	0.77 ± 0.32	1.17 ± 0.25	1.54 ± 0.27	1.16 ± 0.66
50	1.34 ± 0.31	1.97 ± 0.45	2.28 ± 0.52	2.00 ± 0.54
55	1.63 ± 0.82	1.95 ± 0.47	2.45 ± 0.83	2.07 ± 1.26

Table 2 (Inter-scanner variability): MTR variability (ΔMTR) of scans between scanner A (Siemens Avanto) and scanner B (Siemens Espree) for flip angles $\alpha = 35^\circ$ – 55° . Mean values and standard deviations from six healthy volunteers are calculated in two white (1,2: Fig. 1a,c) and two gray (3,4: Fig. 1b,d) matter ROIs.