

# Fast High-Resolution $T_1$ Mapping using Inversion Recovery Look-Locker Echo-Planar Imaging at a Steady State: Optimization for Accuracy and Reliability

W. Shin<sup>1</sup>, H. Gu<sup>1</sup>, and Y. Yang<sup>1</sup>

<sup>1</sup>Neuroimaging Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States

## Introduction

Fast measurement of spin-lattice relaxation time constant ( $T_1$ ) has been increasingly popular for determining pathology in brain tissues. Segmented inversion recovery Look-Locker [1] echo-planar imaging (IR LL-EPI) approaches have been used for high-resolution, whole brain  $T_1$  mapping due to their fast acquisition. However, additional delay time between segmented LL-EPI acquisitions is needed in these techniques for the longitudinal magnetization to recover to its equilibrium state. In this study, a fast  $T_1$  measurement sequence using IR LL-EPI at a steady state (IR LL-EPI SS) is presented. Delay time for a full magnetization recovery is not required in the sequence, saving acquisition time significantly for high-resolution  $T_1$  mapping. Imaging parameters of the IR LL-EPI SS sequence were optimized to minimize the bias from the imperfection of excitation pulses and to maximize the accuracy and reliability of  $T_1$  measurements.

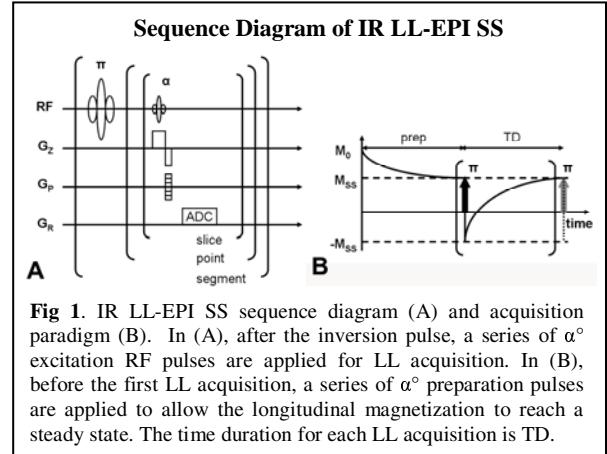
## Methods

**IR LL-EPI acquisitions at steady states (IR LL-EPI SS):** A LL-EPI sequence collects multiple data points in an IR period [1]. When a series of  $\alpha^\circ$  pulses with a time interval of TR are applied after an inversion pulse, the effective relaxation time constant ( $T_1^*$ ) can be expressed as  $1/T_1^* = 1/T_1 - \ln(\cos(\alpha))/\text{TR}$ . As shown in Fig.1, after the signal intensity approaches to a steady state ( $M_{SS}$ ), LL-EPI acquisitions are performed, each with duration of TD. With no delay time between the LL-EPI acquisitions, the signal intensity is:  $S(t) = M_{SS}/[1-2\exp(-t/T_1^*)]$ .

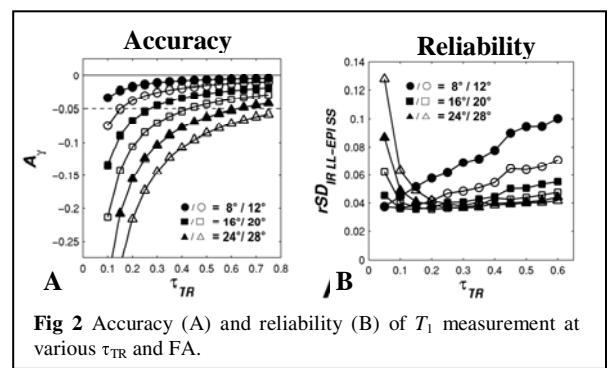
### Optimization of the parameters:

- Accuracy: One of the error sources in the  $T_1$  measurement using IR LL-EPI is the imperfect flip angle (FA) of the excitation pulses. When an unitless variable,  $\tau_{TR} = \text{TR}/T_1$ , is introduced, the accuracy of measured  $R_1 = 1/T_1$  due to the imperfect excitation can be expressed as  $A_\gamma = (R_1, \text{measured} - R_1, \text{true})/R_1, \text{true} = \ln(\cos(\alpha)/\cos(\gamma\alpha))/\tau_{TR}$ , where  $\gamma$  is the efficiency of the excitation pulse. The accuracy of  $T_1$  measurement was simulated with  $\gamma=0.814$ , which represent the lowest 99% of the B1 efficiency values observed in brain imaging [2].
- Reliability: Using Monte-Carlo simulation, signal relaxation in the IR period was simulated  $10^4$  times, with appropriate noise added and with various FA and  $\tau_{TR}$  values. From the simulated data, reliability was evaluated by the standard deviation of measured  $R_1$  divided by true  $R_1$  (rSD).

## Results and Discussion


Fig.2 shows the accuracy ( $A_\gamma$ ) and reliability (rSD) of  $T_1$  measurement using IR LL-EPI SS, as functions of FA and  $\tau_{TR}$ . To maximize the reliability and minimize the bias of the measurement, optimal FA was determined from this analysis. Considering  $T_1$  values of brain tissues at 3T, FA of  $16^\circ$  was chosen by minimizing  $A_\gamma + 2.33|\text{rSD}|$  in the range of  $0.25 \leq \tau_{TR} \leq 0.4$ .

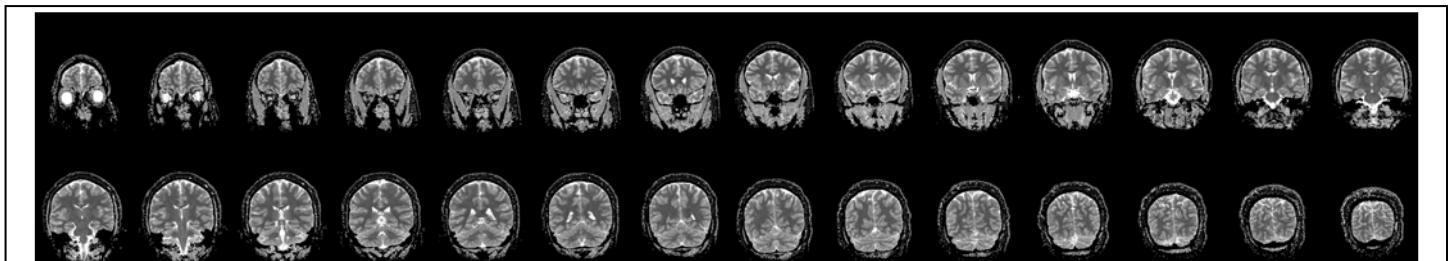
With a fixed number of slices, or a brain coverage, the total running time is dependent on TR. Tab.1 shows the performance of IR LL-EPI SS sequence as a function of TR, with FOV=256×192 mm<sup>2</sup>, matrix =256×192, thickness=4 mm (voxel size=1×1×4 mm<sup>3</sup>), and 28 slices. TR is important for fast high-resolution  $T_1$  mapping, because it affects the reliability and total acquisition time. In this study, the optimal TR was chosen as 400ms. Relative to the results at TR=400ms, TR of 300 ms gives a 9% improvement in reliability, while TR of 500 ms losses 10% of reliability. However, the total running time increases by 66% with TR=300 ms and decreases by 21% with a TR=500ms, compared to TR=400 ms. The accuracy and reliability of IR LL-EPI SS were compared with a conventional IR LL-EPI technique and there was no significant difference between them. A representative  $T_1$  maps with the optimized imaging parameters from a healthy subject is shown in Fig.3.


## Conclusion

Fast high-resolution  $T_1$  mapping can be achieved by the IR LL-EPI SS method, which does not require an additional time delay between IRs and therefore shortens the total acquisition time. Compared with IR LL-EPI, the IR LL-EPI SS method preserves similar accuracy and reliability, while saving 20% in acquisition time. The proposed fast  $T_1$  mapping technique was demonstrated on in vivo human brains, and provided an imaging time of 8.6 s per slice.

**Reference** 1. Look & Locker, RSI, 1970. 2. Samson et al., MRI, 2006.




**Fig 1.** IR LL-EPI SS sequence diagram (A) and acquisition paradigm (B). In (A), after the inversion pulse, a series of  $\alpha^\circ$  excitation RF pulses are applied for LL acquisition. In (B), before the first LL acquisition, a series of  $\alpha^\circ$  preparation pulses are applied to allow the longitudinal magnetization to reach a steady state. The time duration for each LL acquisition is TD.



**Fig 2** Accuracy (A) and reliability (B) of  $T_1$  measurement at various  $\tau_{TR}$  and FA.

**Tab 1.** Performance of IR LL-EPI SS at different TRs.

| TR (ms) | lines per acquisition | Total Time (min) | Time per slice (s) | Reliability (%) |
|---------|-----------------------|------------------|--------------------|-----------------|
| 300     | 5                     | 6:40             | 14.3               | 4.0±0.2         |
| 400     | 9                     | 4:00             | 8.6                | 4.2±0.2         |
| 500     | 11                    | 3:10             | 6.8                | 4.6±0.5         |



**Fig 3.** Representative  $T_1$  maps of 28 brain slices are presented from 0 (black) to 3500ms (white), which were acquired at 8.6.s per slice.