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Introduction: Imaging the mechanical properties of tissue has emerged as an important topic in both the fields of ultrasonography and MRI. In MRI, phase-based
methods, such as dynamic MR elastography (MRE, [1]) have been developed to image tissue response to extrinsic and intrinsic stresses. These images of tissue
deformation are then processed [2] to determine material properties. Achieving accurate measurements of tissue properties can require the acquisition of 3D, full-vector
displacement data at numerous time points, which can be prohibitive in clinical settings. One way to reduce acquisition times is to reduce the resolution of the
acquisition matrix, particularly the number of phase-encoding lines in k-space. The challenge is to determine the minimum amount of k-space that must be sampled to
produce acceptable assessments of tissue mechanical properties. The purpose of this work is to investigate some of the properties of MRE data that affect the minimum
amount of k-space that must be acquired. - s

Theory: In MIi{E, multiple datase(tls are acquired with different time offsets between 9d(r.t)=Assin(2r o/ A+21Ft+ar) M
the motion and the motion-encoding gradients (MEG), as well as with different MEG p(l’ ,t):m(r)*exp[i*[(po(r )+A*sin(2nr -ﬁ//1+2nFt+0()]:| )
directions to fully sample the vector motion and to perform phase-contrast
calculations. Let the transverse magnetization for any one of these acquisitions be P(k,t):f{m(r)*exp[i*(;b(r)]}@f{exp[i*A*sin(lnr Oﬁ/l+2nFt+a)]} 3)
described by p(r,t) = m(r)=*exp(i (1 ,t)), where m(r) is the magnitude of the transverse
magnfetization (as§umed to be.time indfependent).and ¢(r,t) is the phase. A r.esult of P(k,t)=f{...}® ; Jn(A)*exp[in(21tFt+a)]*f{exp[21tinr-ﬁ/ﬂ]} 4)
applying a dynamic stress to tissue during MRE is to produce a shear wave field that
propagates throughout the tissue. The MEG encode that shear wave field into the
phase of the transverse magnetization. If the shear wave field is approximated as a _Z . : o 7 nA
simple plane wave, then the encoded dynamic phase data can be written as Eq. (1), P(k’t)_ z Jn(A) -exp[ln(ZnFHa)]*[f{...}®6(k+ A H )
where A is the amplitude of the phase variations due to the motion and MEG, A is the
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transverse magnetization can then be written as Eq. (2), where ¢@(r) is a static background phase term that 2

arises from such things as off resonance, concomitant fields, and gradient imperfections. The k-space for this * l \ l \ ( \ / \ 2:
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transverse magnetization can be written as Eq. (3), where # e} is the spatial Fourier transform and ® is the
convolution. The second exponential can be rewritten using the Jacobi-Anger expansion and the linearity of the ~
Fourier transform to give Eq. (4), where A ...} represents the Fourier transform of the original static object and
Jn(A) is the Bessel function of the first kind of order n. The last Fourier transform in Eq. (4) can be written as
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S(k+n A /4), where & is the delta function, allowing Eq. (4) to be written as Eq. (5). This indicates that the effect Figure 1: (a) Example of a simulated phantom. (b)
of MRE motion encoding is to produce periodic replicas or ghosts of the k-space of the static object. These K-space of phantom and an example apodizing
ghosts are separated in k-space by 1/4 and are weighted by Jn(A). The required amount of k-space to be  |window. (c) Reconstructed shear modulus.

measured will depend on both the wavelength of the shear waves as well as the phase amplitude A of the encoded waves. g 5 Y2123 = 3.0 OAeXRLAET4)2.51
Sampling a finite amount of k-space results in a loss of some of this high-frequency k-space information, which produces g ,, . S 59

inaccuracies in the image data. These errors are then compounded when images with two different MEG directions are ° / g 28

combined to calculate the phase-difference images used in most MRE inversion algorithms. g & T

Methods. Numerical simulations were performed in 1D to demonstrate this model of MRE k-space data, to determine the =8 ),r‘ | s 27

impact that undersampling k-space data has on the elastograms, and to determine the amount of k-space needed for stable § 3 / . §' 28 NN
inversions. Complex images with unit magnitude and sinusoidal phase with various amplitudes and wavelengths were x 00 T2 s 45 £ 2-50 10 20 30 40 50

constructed. Each case simulated a 20-cm FOV with a 60-Hz (F) wave discretized with Ny=512 pixels and 8 time offsets. A/ (radicm) Percent Error
The shear modulus of the material was purely real with G € [0.5,10] kPa, and the phase amplitude for each sensitization

—_ y=3.10"x+0.30 y=1.67"exp(-x/7.95)+2.65
direction was A € [0.5,5] radians. For each combination of G and A, the 1D images representing the positive and § 18 ; ?“

negative motion-encoding data were created and Fourier transformed into k-space. Each k-space image was windowed § % 4.0

with a Ny-point apodizing window of the form (1-x°)’, where Ny, € [3,511] and X contains N, evenly spaced points from- § 9 S36

1to 1 [3]. The windowed k-space data were Fourier transformed back to image space and the phase difference of the two = 52
“motion-encoding” directions was calculated. The phase data were then processed like regular MRE data to obtain § 3 828 !
estimates of G with a direct inversion algorithm incorporating 3-point derivative kernels and no additional smoothing. f 0 o T

The mean and standard deviation (SD) of G over the middle half of each image were calculated and recorded. To 012 345 L 2'40 10 20 30 40 50
correlate the amount of k-space truncation with the error E in the stiffness estimates (E € [1,50]% difference from the true — AP {radiom) Percent Er4'°r
G), the largest window size that resulted in a mean G and a SD of G that deviated from the true G by more than E were Figure 2: Lpft column are results targeting a
noted and the next largest window size W was recorded for each G and A. Since the required amount of k-space was 10% eqor in G. Right column are resplts
expected to increase with A and 1/4, for each value of E, the W versus A/A data were fit to a line and the slope M of the mdl_catmg the z_zlmount of k-space required to
line (in units of window size per rad/cm, or cm’'/(rad/cm), or rad) was recorded. The M versus E data were then fit to an achieve a specific error. The top and

. . . . . . bottom rows use the error between the
exponential to see how the choice of k-space size for a particular G and A affects the error in the estimates of G.
Results: Figure 1(a) shows an example 1D simulated phantom with G = 2 kPa and A = 2 radians. The k-space data have pctual G and the mean of G or the SD of G,
numerous peaks due to the ghosting effect in Eq. (5) (Fig. 1(b)). An example k-space windowing function is also shown respectively.
in Fig. 1(b). Figure 1(c) shows the final elastogram for this truncated data. The reconstructed G has a mean of (2.0183 £ 0.2182) + (0.0002 + 0.1164)i. Figure 2 (first
column) shows a cumulative plot of what size k-space window is required to obtain 10% error in G (top row) or the SD of G (bottom row) for a particular A/A. The
second column shows the cumulative results from performing fits such as those in the first column for several different error percentages.
Discussion and Conclusions: These results support the fundamental hypothesis of this work that MRE data with high wave amplitudes in the phase data and short
wavelengths require the acquisition of more k-space than would be necessary for the static object or even for low-amplitude motion or longer wavelengths. This can
result in situations where the raw k-space data are not fully sampled, which can produce artifacts in the elastograms (e.g., Fig. 1(c)). The plots in Fig. 2 suggest that it
may be possible to relate the amount of amount of k-space truncation to the amount of error in the elastograms. Such a theory would be beneficial for optimizing MRE
acquisition protocols by reducing the amount of k-space that has to be acquired. The results presented here may not directly port to conventional MRE acquisitions
because the model is still very simple. For example, it does not account for more complicated magnitude and phase signal variations, noise, or discretization effects [4].
However, it may be possible to extend this model and methodology to include such behavior.
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