

Comparing methods for absolute quantification of brain metabolites in grey and white matter

C. Testa¹, E. Malucelli¹, D. N. Manners¹, C. Tonon¹, R. Lodi¹, B. Barbiroli¹, and S. Iotti¹

¹University of Bologna, Bologna, Italy

Introduction

Absolute quantification of brain metabolites by ¹H-MRS can be used to investigate metabolic alteration in grey and white matter, by assessing changes in their concentrations¹. A rigorous quantification requires the consideration of T₁ and T₂ relaxation effects. Nevertheless, a sufficiently long repetition time and short echo time can minimize the effect of relaxation times on metabolite concentrations. Here we compare two quantification protocols based on LCModel² analysis of spectra to assess whether the use of mean T₂ relaxation times of metabolites (MP, mean protocol) in grey and white matter of healthy subject gives metabolite concentrations comparable to those obtained using each subject own T₂ (IP, individual protocol). The MP allows us to halve the acquisition time of a full spectroscopic exam.

Methods

We investigated 13 healthy subjects (age 40±17, mean ± standard deviation, 7 males) for the spectroscopic acquisition in grey matter and 12 healthy volunteers (age 40±16, 9 males) for acquisition in white matter. The study was approved by the local ethical committee and all subjects provided written informed consent.

All ¹H-MRS spectra were acquired with a 1.5 T General Electric Medical Systems Signa Horizon LX whole-body scanner using a 25 cm diameter quadrature birdcage head coil. Using a single-voxel PRESS localization sequence, a voxel of 3x3x2 cm³ was placed in the mid-brain parietal-occipital grey matter and a voxel of 2x2x2 cm³ in left-parietal-occipital white matter. Spectra were collected at 5 echo times (TE = 35, 70, 100, 144, 288 ms), TR = 4000 ms, and 32 FIDs. We also collected unsuppressed water spectra at 11 echo times (TE = 25, 30, 40, 50, 60, 80, 100, 300, 600, 900, 1000 ms) TR = 15000 ms to be used as internal standard. Both suppressed and unsuppressed water spectra were processed with the fitting program LCModel which analyzes spectra in the frequency domain as a linear combination of a basis set of complete model spectra of metabolite solutions *in vitro*.

The T₂ of Cho, Cr and NAA were calculated by fitting the decay of their signal in the water-suppressed PRESS spectra at different TEs as monoexponential; water T₂ relaxation times were calculated by fitting the decay of unsuppressed water using a bi-exponential equation assuming a two-compartment model. We set up two quantification protocol: the individual (IP) and the mean protocol (MP). T_{2s} of water were estimated for both protocols to calculate metabolite concentrations (namely [Cho], [Cr], [NAA]) using water as an internal standard. In the IP, [Cho], [Cr], [NAA] were assessed by calculating each subject own T₂ of metabolites. In the MP, [Cho], [Cr], [NAA] were assessed at TE=35 ms using the mean value of T₂ for each metabolite. Statistical analysis was done using SPSS (version 14.0). Descriptive statistics were calculated for T₂ and concentrations of each metabolites separately for the two groups of volunteers (grey and white matter). A full factorial ANOVA was performed including three factors which might influence the analysis: tissue, protocol and the specific metabolite.

Table 1. Mean T₂ times (ms) using IP protocol

white matter (n.12)			grey matter (n.13)			
	Cho	Cr	NAA	Cho	Cr	NAA
	300	213	750	340	199	530
SD	(33)	(17)	(118)	(37)	(13)	(103)
CV	11%	8%	15%	11%	7%	19%
R ²	0.97	0.98	0.94	0.98	0.98	0.98
SD	(0.03)	(0.02)	(0.05)	(0.01)	(0.01)	(0.01)

Results and Discussion

Table 1 shows T₂ of metabolites calculated by LCModel which are in agreement with literature, with the exception of T₂-NAA which is substantially higher^{1,3}. Possible explanations have to be found even though the means of the coefficient of determination R² of the mono-exponential fitting is largely over 0.9. In Table 2 metabolite concentrations are reported both for IP and MP: each metabolite showed similar CV values in both grey and white matter. IP and MP concentrations are very similar. In fact, ANOVA analysis (Table 3) suggests that the use of the different protocols does not significantly affect concentrations values. Our analysis showed that it is possible to use the MP protocol to calculate absolute concentration values which are not significantly different from those calculated using the individual T₂ of metabolites derived for each subject. This means that it is possible to have an accurate quantification while halving the acquisition time for both white and grey matter spectroscopic exams.

¹Kreis R, Ernst T, Ross BD. J of Magn Reson Serie B 1993;102:9-19

²Provencher SW. NMR in Biomedicine 2001; 14: 260-264

Table 2. Mean concentrations (mM)

IP, white matter (n.12)			IP, grey matter (n.13)			
	[Cho]	[Cr]	[NAA]	[Cho]	[Cr]	[NAA]
Conc	2.28	6.99	10.95	1.34	8.29	9.29
SD	(0.25)	(0.61)	(0.75)	(0.19)	(0.89)	(0.95)
CV	11%	9%	7%	14%	11%	10%
MP, white matter (n.12)			MP, grey matter (n.13)			
	[Cho]	[Cr]	[NAA]	[Cho]	[Cr]	[NAA]
Conc	2.27	6.96	10.93	1.34	8.28	9.26
SD	(0.24)	(0.56)	(0.71)	(0.19)	(0.85)	(0.90)
CV	10%	8%	6%	14%	10%	10%

Table 3. Main effects of full factorial ANOVA

Factor	p	Level	Mean	SD
Tissue	<0.001	white matter	6.729	3.607
		grey matter	6.300	3.625
Protocol	N.S.	IP	6.521	3.630
		MP	6.508	3.616
Metabolite	<0.001	Cho	1.807	0.515
		Cre	7.630	0.983
		NAA	10.107	1.167

³Rutgers DR and van der Grond J. NMR in Biomedicine 2001; 15: 215-221