Quantitative Magic Angle Spinning Detection of Deuteration in Small Biopsies of Rat Brain

M. R. Fayos Carrio¹, V. Righi², A. Mucci², L. Schenetti², and S. Cerdán¹

¹IIB, CSIC, Madrid, Spain, ²Università di Modena, Italy

Introduction: The replacement of the ¹²C present in cerebral metabolites by ¹³C derived from appropriate ¹³C enriched precursors, as detected by ¹³C NMR, has allowed the determination of the cerebral tricarboxylic acid and glutamine cycle fluxes. However, the ¹³C NMR method is relatively insensitive and requires significantly long acquisitions, a circumstance limiting the time resolution of the method. Up to now, only fluxes slower than the tricarboxylic acid cycle flux have been determined after fitting the ¹³C turnover curves to appropriate models of cerebral metabolism. To overcome this limitation we proposed earlier the investigation of the ¹H-²H exchange of specific metabolite protons from ¹³C isotopomers, a process depicting faster kinetics and thus potentially able to investigate faster reaction rates. However, the High Resolution ¹³C NMR approach we proposed earlier, requires the use of relatively large amounts of brain samples for the preparation of extracts. More recently, it has become possible to obtain high resolution ¹³C and ¹H NMR spectra directly from the tissue biopsies avoiding extract preparation, by using High Resolution-Magic Angle Spinning (HR-MAS) Spectroscopy. Here, we report on the use of 1D and 2D ²H, ¹H-²H and ¹H-¹³C HR MAS methodologies to investigate quantitatively ¹H-²H turnover in small (< 10 mg), intact and unprocessed, biopsy samples prepared from the brain of deuterated rats.

Materials and Methods: All animal protocols were approved by the appropriate institutional bioethical committee and follow the guidelines of the responsible governmental agency. Male Wistar rats (180-200g, n=3) fed *ad libitum*, drunk 50% D₂O for nine days. On day ten, the animals were anesthetized (1% isofluorane in 95% oxygen), a solution of (1- 13 C) glucose infused through the right jugular vein for sixty minutes and the brain fixed with high power microwaves (5 kW, Muromatsu Inst., Tokio, Japan). Microwave fixed brains were divided in two parts, one used to obtain HR-MAS and the other to acquire High Resolution spectra from a perchloric acid extract. Biopsies smaller than 20 mg were introduced in 50 μL zirconium rotors and 1D 1 H or 2 H and 2D COSY 1 H- 2 H HR-MAS (4 0 C, 4000 Hz) acquired either at 9,4 Tesla or 11,7 Tesla using Bruker AVANCE instruments equipped with HR MAS and high resolution probes. 2 H High resolution and HR-MAS spectra were routinely acquired through the lock channel after deactivating the lock frequency sweep. High resolution 1D 1 H, and 2D HSQC spectra from extracts were acquired using commercial 5 mm triple (1 H, 13 C, 31 P) probes.

Results: Figure 1 compares ²H NMR spectra obtained under high resolution conditions from a conventional PCA extract from brain (1A) and under HR-MAS conditions from the contralateral biopsy (1B). The fractional deuteration of animals under these feeding conditions is 16% as revealed previously by the deuteration of the urine, yielding values of absolute deuteron content of ca. 9 M ²H₂0 in the heavy water resonance, 1.08 mM in Lactate H3, 0.98 mM in NAA H₆, 0.46 mM Glux H₃, 0.31 mM Glux H₄ and 0.55 mM in the Cr resonance of Fig. 1B. Fractional deuterations are, however metabolically more informative. These can be derived from either 2D ¹H-²H correlations or ¹H-¹³C correlations as follows. Figure 2 shows a ¹H-²H 2D COSY HR-MAS spectrum obtained from the same brain biopsy. Only the correlations of the most prominent resonances are observed like; Lac H₃-²H₂ (1.35-4.07 ppm) or NAA H₆-²H₆ (2.05-2.05 ppm), since no correlations can be obtained for perprotonated or perdeuterated species. Under these conditions, the volume of the corresponding ¹H-²H correlation peak reaches a maximum for 50% fractional deuteration (Figure 3), becoming undetectable either at natural abundance or 100% deuterations. To improve this situation, we used 2D ¹H-¹³C HSQC spectra, a method in which the volume of the ¹H-¹³C cross peak is linearly inversely proportional to the 2H enrichment of the attached carbon. We demonstrated this (Figure 4) using samples of (U-¹³C) glucose containing 97% deuteration over the entire molecule, 50% deuteration over the entire molecule or natural abundance deuterium, respectively. The same methodology made it possible to resolve the presence of the differently deuterated methyl isotopomers (CH₃, CDH₂ and CD₂H) of acetate in an acetate sample with 50% deuteration in a ¹H-¹³C (Figure 5). Under these conditions, the presence of one or two deuterons in the methyl group originates the shifted triplet or quintet structures in the HSQC spectrum.

Conclusion: In summary, we implemented several 1D (1 H, 2 H) and 2D (1 H- 2 H, 1 H- 13 C) methods allowing the determination of the absolute or fractional deuteration in specific metabolite carbons of small brain biopsies using HR MAS methodology.

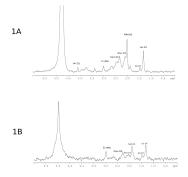


Figure 1. Deuterium spectra of brain extract (upper) and tissue (bottom), both acquired at 400 MHz

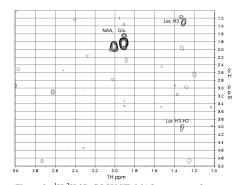


Figure 2. ¹H-²H 2D COSY HR MAS spectrum of brain biopsy (400 MHz)

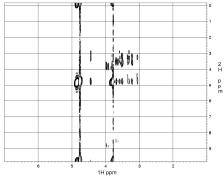


Figure 3. Proton-deuterium HMBC correlation spectrum of 50% ²H, 99% ¹³C labelled Glucose (500 MHz)

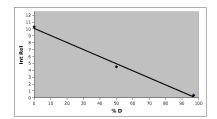


Figure 4. Linearity in Glucose $^1H\text{-}^{13}C$ cross-peak volume versus percentage of deuteration as measured in $C_1\text{-}\beta H1$ correlation.

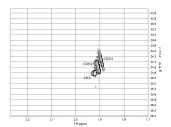


Figure 5. ¹H-¹³C HSQC of 50% deuterated (2-¹³C) acetate sample. Note resolution of perprotonated, monodeuterated and bideuterated methyl groups