

31P Spectroscopic Imaging with GRAPPA

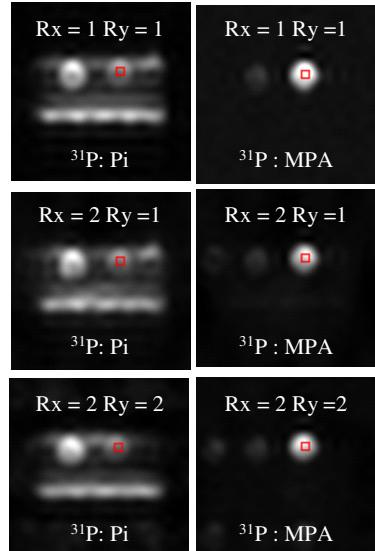
R. Srinivasa Raghavan¹, A. Panda², J. Valette³, J. R. James^{2,4}, K. Heberlein⁵, U. Boettcher⁵, P-G. Henry⁶, N. Bansal⁷, and U. Dydak^{2,4}

¹School of Electrical & Computer Engineering, Purdue University, West Lafayette, Indiana, United States, ²School of Health Sciences, Purdue University, West Lafayette, Indiana, United States, ³CEA-NeuroSpin, Gif-sur-Yvette, France, ⁴Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana, United States, ⁵Siemens Healthcare, Erlangen, Germany, ⁶Center for Magnetic Resonance Research, University of Minnesota, United States, ⁷Department of Radiology, Indiana University, United States

Introduction

Applying ³¹P magnetic resonance spectroscopic imaging (MRSI) for the assessment of changes in liver metabolism may provide additional information for the diagnosis and treatment monitoring of various liver diseases [1]. However, due to the low abundance of ³¹P nuclei in tissue, resulting in lower sensitivity compared to protons, acquisition parameters in ³¹P MRSI are ruled either by large voxel sizes or abundant averaging. 3D MRSI is a possibility to achieve a reasonable amount of signal to noise (SNR) without the need of averaging, which usually comes at the cost of long scan times. Applying fast MRSI techniques to ³¹P MRSI is challenging due to the short T2 relaxation times of ³¹P metabolites and the necessity to sample a large bandwidth. However approaches combining echoplanar sampling with ³¹P MRSI have been successfully demonstrated [2]. Parallel imaging techniques are another attractive approach and have proven successful for acceleration of ¹H MRSI [3,4]. However, this approach has not been easily possible so far, due to limited availability of ³¹P coils with multiple receiver channels. In this work we investigate the feasibility of using GRAPPA [5] to accelerate and reconstruct ³¹P MRSI acquisitions in a phantom using a novel 8-channel phased-array dual-tuned ³¹P/¹H coil.

Methods


Coil & phantom design: Phantom data were acquired on a Siemens 3T TIM Trio whole body system scanner (Siemens Healthcare, Erlangen, Germany). A novel dual tuned 8-channel ³¹P/¹H coil, designed for liver, was used for ³¹P MRSI. The coil array consists of two plates (30x30cm) each with four receiver (RX) ³¹P elements of about 24x20 cm with filters for proton decoupling, one ³¹P transmit (TX) element of about 30x30cm, and one ¹H TX-RX element of about 27x25 cm (STARK CONTRAST MRI Coils Research) (Fig.1).

A 10 L plastic carboy (20x15x30 cm³) filled with a 100 mM potassium phosphate (Pi) solution and containing two plastic spheres filled a) with 100 mM methylphosphonic acid (MPA) plus 300 mM Pi and b) with 500 mM MPA plus 200 mM Pi, served as phantom for this feasibility study.

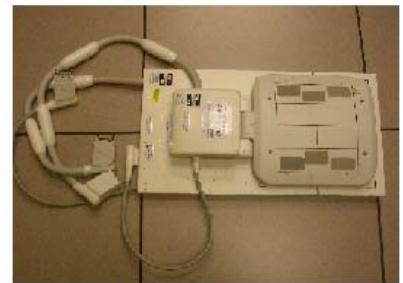
Sequence: A slice selective axial FID MRSI sequence with 24x24 spatial encodings, slice thickness = 25 mm, TE/TR = 2.3ms/1500 ms, bandwidth = 4000 MHz, and 1024 spectral points was used to acquire data from a 400 x 400 mm² FOV with one average. To evaluate the potential parallel imaging capabilities of the coil, synthetic data sets were generated by sub-sampling the fully acquired data. A central calibration region of 12x12 was retained for computing coil weights with a 4x3 kernel. In this case acceleration factors of $R_x \times R_y = 2 \times 1$ and 2×2 were investigated and compared to the fully sampled case ($R_x \times R_y = 1 \times 1$). The deleted points in the synthetic data were then reconstructed using the GRAPPA kernel. The GRAPPA-reconstructed spectra from each coil were first phase-corrected relative to one reference coil and then combined using vector summation. Metabolite maps were generated by integrating over the two peaks Pi and MPA.

Fig.2: Metabolite images for Pi and MPA are shown for different GRAPPA factors. The correspondent spectra originate from the outlined (red) voxel.

Results

Metabolite maps of Pi and MPA for the axial slice depicted in the ¹H survey image are shown in Fig.2 for varying values of acceleration factors. The reconstructed spectra from the outlined voxel are shown adjacent to the corresponding metabolite maps. As can be seen, the spectral signal to noise ratio (SNR) decreases with increasing acceleration factor as predicted and the MPA maps show minimal aliasing artifacts. However, the metabolite images and spectra reconstructed from undersampled data are of similar quality as the ones reconstructed from fully acquired data.

Discussion


GRAPPA is particularly attractive for ³¹P MRSI since it obviates the need for separate sensitivity maps, which can not easily be provided for ³¹P coils. However, SNR will remain problematic. Work in progress includes the reconstruction of a 3D dataset undersampled in two dimensions, as 3D MRSI will probably be the only sequence allowing for the necessary SNR *in vivo* within a single average to be able to benefit from parallel imaging.

Conclusion

In conclusion, metabolic imaging with ³¹P can in principle be combined with parallel imaging.

References:

- [1] S. F. Solga et. al. Liver International 25, 2005
- [2] M. Ulrich et al., MRM 57:784–790, 2007
- [3] Dydak et al., MRM 2001; 46(4):713-22
- [4] Zhu et al., MRM 2007;57:815-20
- [5] Mark A. Griswold et al., MRM 54:1553–1556, 2005

Fig.1: 8-channel phased-array dual-tuned ³¹P/¹H coil for ³¹P MRS with proton decoupling and ¹H MRI.