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Introduction: The glycine cleavage system, found loosely associated with the mitochondrial inner =
membrane (1), is responsible for the majority of glycine catabolism in mammals. It converts the 1-C of Hioed/Hiie ﬁi Sarine Isoiopomers
glycine into CO, and transfers the 2-C to tetrahydrofolate (THF), forming methylene THF (mTHF). The o wer swe2
formation of mTHF in the mitochondria is tightly coupled to mitochondrial serine hydroxymethyltransferase Crtael ‘{‘AJ '
(MSHMT) activity (2), a reaction that transfers the methyl group obtained from glycine onto a second s »
glycine to form serine. A similar reaction also occurs in the cytosol, catalyzed by cytosolic SHMT (cSHMT). Der St i‘l" °||p
Pasternack et al. first exploited this compartmentation in yeast, feeding the cells labeled 2-**C glycine and A o=
observing the pattern of serine isotopomer formation (3). Since GCS is restricted to the mitochondria, 000 ¢ e H I”
serine can only be labeled in the 3 position from 2-'*C glycine if it is formed in the mitochondria (Fig 1). As N e .
a result, by monitoring formation of serine labeled at the 3 position, it is possible to assess GCS activity. z m;;\ ) PR
Since GCS activity is stimulated by an increased NAD*/NADH ratio (4), hormonally activated by glucagon ‘““rm,ﬁ}e & P
(5), and absent in diseases such as non-ketotic hyperglycinemia (NKH), we hypothesize that analysis of Adexine
differences in the resulting pools of 2-C serine, the cytosolic pool, and 3-C serine, the mitochondrial Fi ) N )

. . . . R . g R . . ig 1. Diagram of serine isotopomer formation from 2-
contribution, can be used as a non invasive, in vivo detection system of mitochondrial function. 13C glycine. Orange circles indicate 13C label.
Methods: Rat liver cells were isolated using a standard collagenase digestion protocol as described by (6).  |Enzyme 1 is the GCS and enzyme 2 is SHMT .

The hepatocytes, viability > 85%, were then resuspended to a density of 2.0 million/mL in plating media

(DMEM high glucose with L-glutamine and pyruvate plus
10% FBS, 100U penicillin/streptomycin, 140nM insulin,
and 1uM dexamethasone) and 10mL was plated onto
collagen-coated 145cm? plates. After 1-2 h the media
containing unattached/dead cells was removed and 0230 @
replaced with fresh plating media (37°C). After overnight
incubation at 37°C, 5%CO,, hepatocyte plating media was
then replaced with 10mL of appropriate test media for one
hour, and then spiked with 5 mM 2-*C glycine for two
hours. At this point, two plates were extracted using a
1:1:1 methanol:water:chloroform extraction method and
protein was measured using the Bradford assay. Mixture
was then shaken vigorously, allowed to separate
overnight, - lyophilized and _p(_ellet was dissolved in Fig 2. Representative 13C spectra from 2-D hepatocytes untreated, treated with 5 uM CCCP, 100 mM ethanol, or
Pahose?ate'bllﬁer?d D0 containing 1m’¥; TSP and 2.5mM 500 UM cysteamine. The control spectrum shows isotopomer positioning.

C, N formamide, pH 8.0. The ~°C spectra were

Control CCCP Ethanol Cysteamine

obtained using an 11.7T Varian (Palo Alto, CA) INOVA equipped with a 5 mm broadband
probe at 25°C. The SW = 32K Hz, AT= 2 sec, and D1 = 2 sec, and "H decoupling was
performed with a WALTZ 16 during acquisition. All spectra were normalized to formamide
and peaks were fitted using ACD software.

Results: Figure 2 presents the characteristic serine isotopomers formed from 2-*C glycine
treatment. The chemical shifts of the 2 and 3 positions of serine were 56.6 and 60.4 ppm,
respectively. Figure 3 presents the integrated areas of the isotopomers. As proof of concept,
the potent GCS inhibitor cysteamine, used at 500uM, prevents formation of mitochondrial
serine isotopomers, the 2,3- and 3-*C serine isotopomers, and decreases 2-**C serine by
65%. Treatment with 5uM carbonyl cyanide m-chlorophenylhydrazone (CCCP), a
mitochondrial uncoupler that increases the NAD/NADH ratio, results in a 36% increase in 3-
13C serine, a 52% increase in 2,3-**C serine, and a 23% increase in 2-°C serine compared to
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000 1 control.  Treatment with 100mM ethanol, which causes —
Control ccep Ethanol Cysteamine accumulation of NADH, decreased these isotopomers by w\/
Fig 3. Integrals derived from 13C spectra of hepatocytes 18%, 26%, and 6%, respectively.  Additionally, 100nM
untreated, treated with 5 uM CCCP, 100 mM ethanol, or 500 pM glucagon caused an increase in isotopomers similar to
cysteamine. The values of “0” for cysteamine isotopomers CCCP.
indicate that no peak was detectable. Discussion_and conclusion: These results present new |2 Gly
insight into the expanded use of MRS to probe mitochondrial function. This data, obtained from 2-D hepatocyte skrc  serc2 e
cultures, combined with previous in vivo work from our lab (Fig 4) (7), suggests that monitoring serine isotopomers after
2-13C glycine infusion is a novel research tool to probe mitochondrial function. Additionally, we also speculate that this [ |
approach may be clinically relevant in diagnosing NKH, which currently requires a liver biopsy to definitively diagnose Ppm ¢ ==
(8)- Fig 4. Top In vivo spectrum from rat
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