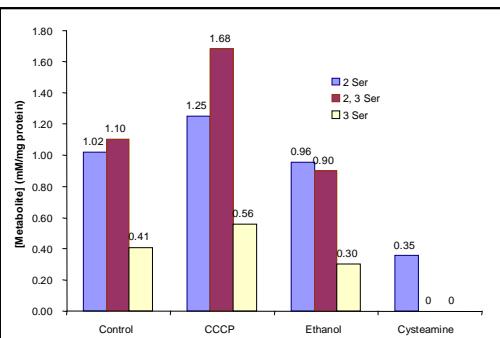


Detection of serine isotopomers as a measure of mitochondrial function


C. B. Johnson¹, P. Pediaditakis¹, A. Tikunov¹, D. Romney², H. Lee¹, E. Holmuhamedov^{2,3}, M. Gamcsik⁴, and J. MacDonald¹

¹Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States, ²Cell Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States, ³The Center of Theoretical Problems of Physico-Chemical Pharmacology, Moscow, Russian Federation, ⁴Biomedical Engineering, North Carolina State University, Raleigh, NC, United States

Introduction: The glycine cleavage system, found loosely associated with the mitochondrial inner membrane (**1**), is responsible for the majority of glycine catabolism in mammals. It converts the 1-C of glycine into CO_2 and transfers the 2-C to tetrahydrofolate (THF), forming methylene THF (mTHF). The formation of mTHF in the mitochondria is tightly coupled to mitochondrial serine hydroxymethyltransferase (mSHMT) activity (**2**), a reaction that transfers the methyl group obtained from glycine onto a second glycine to form serine. A similar reaction also occurs in the cytosol, catalyzed by cytosolic SHMT (cSHMT). Pasternack et al. first exploited this compartmentation in yeast, feeding the cells labeled $2\text{-}^{13}\text{C}$ glycine and observing the pattern of serine isotopomer formation (**3**). Since GCS is restricted to the mitochondria, serine can only be labeled in the 3 position from $2\text{-}^{13}\text{C}$ glycine if it is formed in the mitochondria (Fig 1). As a result, by monitoring formation of serine labeled at the 3 position, it is possible to assess GCS activity. Since GCS activity is stimulated by an increased NAD^+/NADH ratio (**4**), hormonally activated by glucagon (**5**), and absent in diseases such as non-ketotic hyperglycinemia (NKH), we hypothesize that analysis of differences in the resulting pools of 2-C serine, the cytosolic pool, and 3-C serine, the mitochondrial contribution, can be used as a non invasive, *in vivo* detection system of mitochondrial function.

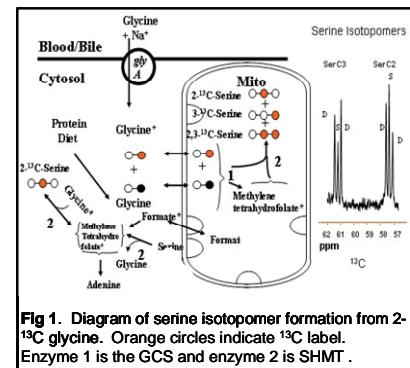
Methods: Rat liver cells were isolated using a standard collagenase digestion protocol as described by (**6**). The hepatocytes, viability $\geq 85\%$, were then resuspended to a density of 2.0 million/mL in plating media

(DMEM high glucose with L-glutamine and pyruvate plus 10% FBS, 100U penicillin/streptomycin, 140nM insulin, and 1uM dexamethasone) and 10mL was plated onto collagen-coated 145cm² plates. After 1-2 h the media containing unattached/dead cells was removed and replaced with fresh plating media (37°C). After overnight incubation at 37°C, 5%CO₂, hepatocyte plating media was then replaced with 10mL of appropriate test media for one hour, and then spiked with 5 mM $2\text{-}^{13}\text{C}$ glycine for two hours. At this point, two plates were extracted using a 1:1:1 methanol:water:chloroform extraction method and protein was measured using the Bradford assay. Mixture was then shaken vigorously, allowed to separate overnight, lyophilized and pellet was dissolved in phosphate-buffered D₂O containing 1mM TSP and 2.5mM ^{13}C , ^{15}N formamide, pH 8.0. The ^{13}C spectra were

Fig 3. Integrals derived from ^{13}C spectra of hepatocytes untreated, treated with 5 μM CCCP, 100 mM ethanol, or 500 μM cysteamine. The values of "0" for cysteamine isotopomers indicate that no peak was detectable.

obtained using an 11.7T Varian (Palo Alto, CA) INOVA equipped with a 5 mm broadband probe at 25°C. The SW = 32K Hz, AT= 2 sec, and D1 = 2 sec, and ^1H decoupling was performed with a WALTZ 16 during acquisition. All spectra were normalized to formamide and peaks were fitted using ACD software.

Results: Figure 2 presents the characteristic serine isotopomers formed from $2\text{-}^{13}\text{C}$ glycine treatment. The chemical shifts of the 2 and 3 positions of serine were 56.6 and 60.4 ppm, respectively. Figure 3 presents the integrated areas of the isotopomers. As proof of concept, the potent GCS inhibitor cysteamine, used at 500 μM , prevents formation of mitochondrial serine isotopomers, the 2,3- and 3- ^{13}C serine isotopomers, and decreases $2\text{-}^{13}\text{C}$ serine by 65%. Treatment with 5 μM carbonyl cyanide *m*-chlorophenylhydrazone (CCCP), a mitochondrial uncoupler that increases the NAD^+/NADH ratio, results in a 36% increase in 3- ^{13}C serine, a 52% increase in 2,3- ^{13}C serine, and a 23% increase in $2\text{-}^{13}\text{C}$ serine compared to control. Treatment with 100mM ethanol, which causes accumulation of NADH, decreased these isotopomers by 18%, 26%, and 6%, respectively. Additionally, 100nM glucagon caused an increase in isotopomers similar to CCCP.


Discussion and conclusion: These results present new

insight into the expanded use of MRS to probe mitochondrial function. This data, obtained from 2-D hepatocyte cultures, combined with previous *in vivo* work from our lab (Fig 4) (**7**), suggests that monitoring serine isotopomers after $2\text{-}^{13}\text{C}$ glycine infusion is a novel research tool to probe mitochondrial function. Additionally, we also speculate that this approach may be clinically relevant in diagnosing NKH, which currently requires a liver biopsy to definitively diagnose (**8**).

REFERENCES:

1. Y. Motokawa, G. Kikuchi. *Arch. Biochem. Biophys.* 146, 461. 1971.
2. V. Prabhu, K. B. Chatson, G. D. Abrams. *J. King. Plant Physiology* 112(1), 207-216. 1996.
3. L. B. Pasternack, D. A. Laude, Jr., D. R. Appling. *Biochemistry* 31, 8713. 1992.
4. R. K. Hampson, M. K. Taylor, M. S. Olson. *Journal of Biological Chemistry* 259(2), 1180-1185. 1984.
5. Jois, M., Hall, B., Fewer, K., and Brosnan, J. T. *Journal of Biological Chemistry* 264(6), 3347-3351. 1989.
6. Berry et al. *Journal of Cell Biology* 43, 506-20. 1969.
7. Macdonald et al. *Magnetic Resonance in Medicine* 48(3), 430-439. 2002.
8. Lang, T. F. et al. *Dev Med & Child Neurology* 50, 157-159. 2008.

ACKNOWLEDGEMENTS: NIH, GM075941-01, and a UNC Biomedical Engineering Research Initiative Project.

