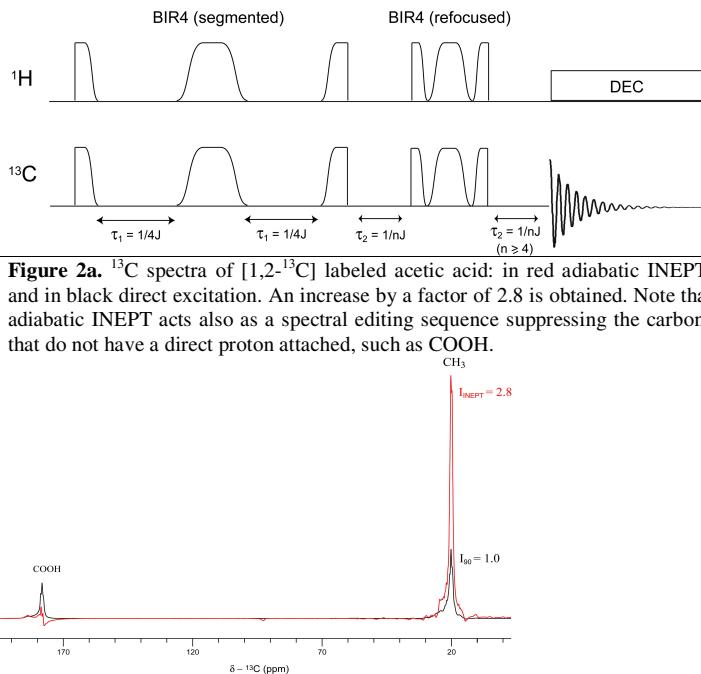


Enhanced in-vivo C13 spectroscopy using adiabatic INEPT sequences and custom-made RF coils


O. C. Andronesi¹, D. Mintzopoulos^{1,2}, H. Merkle³, and A. A. Tzika^{1,2}

¹Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, United States, ²NMR Surgical Laboratory, MGH & Shriners Hospitals, Harvard Medical School, Boston, MA, United States, ³National Institutes of Health, Laboratory of Functional and Molecular Imaging, Bethesda, MD, United States

Introduction: ^{13}C spectroscopy offers several advantages compared to ^1H MRS, including increased spectral dispersion, and eliminates the need for water suppression, though it suffers from inherently low sensitivity. In addition, ^{13}C spectroscopy is important from a physiological point of view because it offers the ability to measure metabolic fluxes such as those of the TCA cycle [1]. In this abstract, we report results obtained with a high-quality custom-made RF coil and optimized sequences including INEPT [2] (with square pulses) and adiabatic INEPT with BIR-4 pulses (BINEPT) [3, 4].

Materials and Methods: All experiments were performed on a 9.4 T horizontal bore (20 cm) animal scanner. We employed a high-quality custom-made RF probe, custom made by the third author, with an inner solenoid for ^{13}C detection and an outer saddle for ^1H detection. To increase ^{13}C signal we employed INEPT [2] and adiabatic INEPT with BIR-4 pulses [3, 4]. BIR-4 pulses of 400 μs having maximum amplitude of 16 kHz and 4 kHz for ^{13}C and ^1H , respectively, were synthesized on a Bruker Avance console. The intra and inter-pulse delays were set according to the ^{13}C - ^1H scalar coupling of acetate (130 Hz). Both BINEPT with direct ^{13}C detection and double BINEPT for indirect ^{13}C detection via ^1H were designed and tested. ^1H decoupling with adiabatic WALTZ-16 sequence was employed during acquisition.

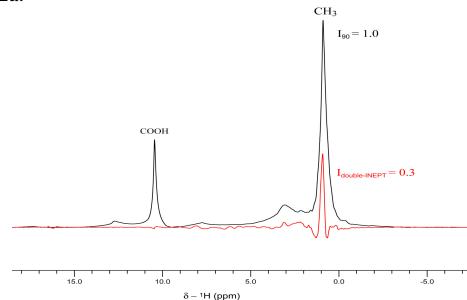

Results: In phantoms our BINEPT sequence (Figure 1) resulted in increased sensitivity by a factor of 2.8 for ^{13}C , when compared with direct excitation following a 90° pulse (Figures 2 and 3a). Similar results were obtained *in vivo* on a mouse (natural-abundance ^{13}C spectra shown in Figure 3b). The optimized BINEPT sequence showed significant signal increase over INEPT and direct excitation (^1H decoupled). The BINEPT sequence also acted as a spectral editing sequence suppressing the carbons that do not have a direct proton attached, such as COOH (Figures 2b and 3b).

Figure 2a. ^{13}C spectra of $[1,2-^{13}\text{C}]$ labeled acetic acid: in red adiabatic INEPT, and in black direct excitation. An increase by a factor of 2.8 is obtained. Note that adiabatic INEPT acts also as a spectral editing sequence suppressing the carbons that do not have a direct proton attached, such as COOH.

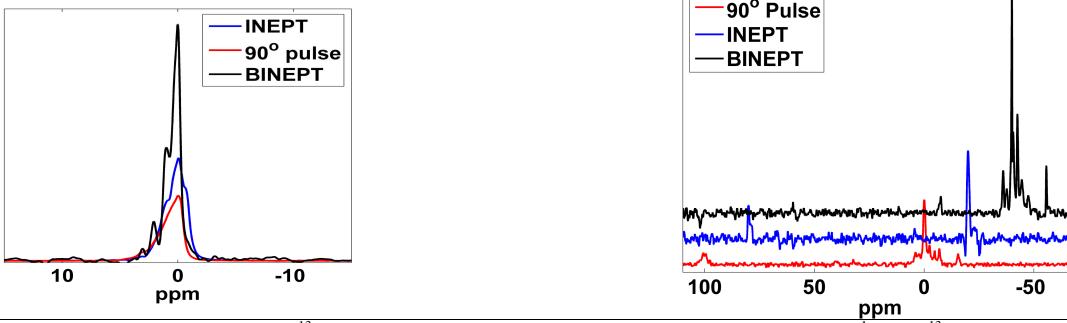

Figure 1. Adiabatic INEPT using segmented adiabatic BIR4 pulses. ^{13}C signal is increased through polarization transfer via scalar coupling from ^1H .

Figure 2b. ^1H spectra of $[1,2-^{13}\text{C}]$ labeled acetic acid: in red double adiabatic INEPT, and in black direct excitation. An efficiency of 30% is obtained compared to direct excitation. However, proton detection has superior sensitivity over the ^{13}C from Figure 2a.

Figure 3a. Comparison of direct excitation ^{13}C 90° pulse (^1H -decoupled), ^{13}C INEPT and ^{13}C BINEPT on a phantom containing $[2-^{13}\text{C}]$ labeled acetate. The BINEPT peak is 170% of the INEPT peak (the acetate peak has been set at 0 ppm).

Figure 3b. *In vivo* ^{13}C spectra of a mouse, collected with direct excitation ^{13}C 90° pulse (^1H -decoupled), ^{13}C INEPT and ^{13}C BINEPT. The main BINEPT peak is 320% of the direct excitation peak (NEX=256, 10min total acquisition time). The lipid resonance has been set at 0 ppm.

Discussion: INEPT results in increased ^{13}C signal through manipulation of the scalar coupling between ^1H and ^{13}C to transfer polarization from ^1H to ^{13}C . BINEPT (INEPT with adiabatic BIR-4 pulses) results in significant further ^{13}C signal enhancement due to improvement of RF inhomogeneity, resulting in highly uniform spin excitation. Further improvements are possible, involving inverse detection of ^{13}C through ^1H and/or extension to multidimensional heteronuclear experiments, useful for unambiguous assignment and quantification of *in vivo* spectra.

References:

[1] B.M. Jucker et al, Proc Nat Acad Sciences (USA) 97 (2000) 6880-6884
 [2] G.A. Morris, and R. Freeman, J Am Chem Soc 101 (1979) 760-762

[3] H. Merkle et al, J Magn Reson 99 (1992) 480-494
 [4] M. Garwood, Y. Ke, J Magn Reson 94 (1991) 511-525