Comparison between internal and external validation of in vivo 31P MRS quantification

J. Dudley¹, W-J. Chu^{2,3}, X. Wang¹, M. M. Norris¹, and J-H. Lee^{1,3}

¹Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States, ²Psychiatry, University of Cincinnati, Cincinnati, OH, United States, ³Center for Imaging Research, University of Cincinnati, Cincinnati, OH, United States

Introduction:

Quantification of MRS signals is possible with an internal or external reference. The $^{1}\text{H}_{2}\text{O}$ signal has commonly been used as an internal reference for ^{1}H MRS data (e.g. in LCModel). Unlike ^{1}H MRS, ^{31}P MRS does not have a reliable internal reference; therefore external references have been generally used [1]. However, it is difficult to validate the result of an external reference. In this work, we propose to use phosphocreatine (PCr) concentration, obtained from *in vivo* ^{1}H MRS in LCModel, as an internal reference for ^{31}P metabolites quantification and compare it with the results determined by using the external reference of inorganic phosphate (Pi). Our goal is to validate quantification of ^{31}P metabolites using Pi phantom data, thus eliminating the need for *in vivo* ^{1}H scans while still affording the same capabilities of ^{31}P metabolite quantification.

Methods:

All MR studies were performed on a Varian 4T whole-body MR system using a ³¹P-¹H dual head coil. Five healthy volunteers were consented and participated in the study. The region of interest for this study was an 8 ml and 12 ml voxel from the anterior cingulate (ACG) for ¹H and ³¹P MRS, respectively. The ¹H spectra were obtained using the single-voxel PRESS sequence (2 x 2 x 2 cm voxel size) and the ³¹P spectra were acquired using a one-pulse 3D MRSI sequence with a three-dimensional spherical sampling scheme (13 x 13 x 13 data matrix, 24 x 24 x 24 cm FOV). A 3D MDEFT image was also acquired for the determination of tissue contents within MRS voxels and the voxel positioning. Analysis of the ³¹P data was performed by the single voxel reconstruction method, which allows spatial positioning of the center of the ³¹P spectral voxels to be the same as that of the ¹H MRS voxels. *In vitro* ³¹P phantom data were ascertained from a 50mM Pi solution using the same sequence and coil as the *in vivo* ³¹P MRSI studies. For comparison, two methods were used for data analysis: the first method relies on PCr levels of *in vivo* ³¹P data while the second method uses Pi levels of *in vitro* ³¹P phantom data for the reference to determine the *in vivo* ³¹P metabolites concentration.

For method 1, ¹H MRS data were analyzed by LCModel with water-suppressed and water-unsuppressed ¹H MRS data. The concentration of PCr can be determined by using the ¹H₂O signal as a reference from the water-unsuppressed MRS at the same voxel. Then, one can use the determined PCr concentration as an internal reference to estimate all other ³¹P metabolite concentrations with ³¹P MRS spectra. All *in vivo* data (¹H and ³¹P) were quantified and accounted for tissue volume (compartmentalization), receiver gain, and relaxations. Here, we assume that the "partial volume" effect of these two voxels (8 *vs.* 12 ml) is negligible.

Method 2 used a two-liter spherical phantom containing a 50 mM Pi solution as an external reference to determine the *in vivo* ³¹P metabolite concentrations. The phantom ³¹P MRS data were collected temporally adjacent to the subject acquisition. The *in vivo* ³¹P MRS data were also adjusted for tissue volume, receiver gain, and T1 relaxation when using *in vitro* Pi signal as a reference. All ³¹P MRS data were analyzed by using JMRUI software.

Results:

Figure 1 is a plot of Pearson correlation for all phosphorus metabolite concentrations (PCr, P_i , α -, β -, and γ -ATP, PME, and PDE) as determined by methods 1 and 2. A fitted line reveals a slope of 0.937 with an R^2 value of 0.925, indicating an approximate 1:1 relationship between these two methods. In addition, all metabolite concentrations are well within reasonable and expected physiological values.

Discussion:

Healthy subjects receiving both ¹H and ³¹P MRSI scans has proven valuable in obtaining important bioenergetic information (e.g., ADP level) and the absolute concentration of high-energy phosphate metabolites [1], but the lengthy protocol may not be practical for patients with mental disorders or other physical conditions. The replacement of in vivo ¹H scans with in vitro ³¹P scans will drastically reduce the amount of time that subjects spend inside the scanner, which is of particular benefit to clinically oriented studies. The slope of nearly one and high R² value indicate that phantom calibrated metabolite quantification is a very promising method. It should be noted that both methods are slightly limited in that ³¹P T₁ and T₂ corrections cannot be made specific to gray and white matter content due to no such T₁ and T₂ data available, however both methods yield concentrations well within physiological ranges. Our results demonstrate that using the in vitro Pi signal as a ³¹P external reference can be reliable and practical for the quantification of in vivo high-energy phosphate metabolites concentration.

References: 1) Pan JW and Takahashi K. Ann Neuro 2005;57:92-97

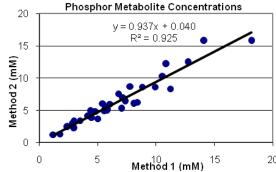


Fig 1. Comparisons of ³¹P concentrations between two methods.