

Hepatic phosphorus metabolite concentrations of patients with type 2 diabetes assessed by ^{31}P 3D MRSI

M. Chmelik^{1,2}, A. I. Schmid¹, S. Gruber^{1,3}, W. Bogner^{1,3}, J. Szendroedi⁴, M. Krssak^{1,3}, S. Trattning^{1,3}, E. Moser^{1,5}, and M. Roden^{4,6}

¹MR Centre of Excellence, Medical University of Vienna, Vienna, Austria, ²Karl-Landsteiner Institute for Endocrinology and Metabolism, Vienna, Austria,

³Department of Radiology, Medical University of Vienna, Vienna, Austria, ⁴Institute for Clinical Diabetology, German Diabetes Center, Dusseldorf, Germany, ⁵Center for Biomedical Engineering and Physics, Medical University of Vienna, Vienna, Austria, ⁶Department of Medicine/Metabolic Diseases, Heinrich Heine University, Dusseldorf, Germany

Purpose/Introduction

It has been shown that abnormalities in energy metabolism can underlie non-alcoholic fatty liver in insulin-resistant and/or type 2 diabetic patients (1). Recently, we developed novel technique for absolute quantification of phosphorus metabolites in human liver using 3D phosphorus magnetic resonance spectroscopic imaging (^{31}P MRSI) (2).

The purpose of this study was to apply novel protocol and asses in vivo hepatic phosphorus metabolite concentrations of patients with type 2 diabetes and their age and BMI-matched controls.

Subjects and Methods

Group of type 2 diabetes patients (T2DM, n=10, age = 58 ± 2 years, BMI = $27 \pm 1\text{kg}/\text{m}^2$) and age and BMI-matched controls (mCON, n=10, age = 61 ± 4 years, BMI = $25 \pm 1\text{kg}/\text{m}^2$) were scanned in prone position in a 3-T Medspec system S300 DBX (Bruker Biospin, Ettlingen, Germany with the surface coil (10-cm dual tuned ^1H / ^{31}P) positioned under the lateral aspect of the liver. A small cylindrical reference sample (V=1 ml, d=10mm, height=13mm) filled with triphenyl-phosphate (TPP, stable signal at -12 ppm) was placed at a fixed location in the center of the surface coil. The ^{31}P 3D k-space weighted MRSI localization technique with adiabatic B_1 insensitive half-passage excitation pulse was used. The 20x20x20 cm FOV was encoded using 13x13x13 matrix. FIDs (1024 complex points, SW=10000Hz) were acquired after the phase encoding gradients. TR was 1000ms and the whole protocol including setup took approximately 45 minutes. The quantification of hepatic metabolites was performed using a simulated phantom experiment (cylindrical phantom with KH_2PO_4 , c=50mmol/l, V=4 l, d=20cm, h=13cm, T₁=2.88s). Data were processed offline using a MRSI software tool developed in our laboratory (3) and were quantified in jMRUI (4) software with the prior knowledge described by Schmid et al.(5). MRS protocol and absolute quantification of ^{31}P metabolites in the human liver, used in this study, was in details described by Chmelik et al.(2).

Results

Results are presented as weighted mean of quantified voxels (T2DM = 56 ± 8 quantified voxels per patient, mCON = 53 ± 10 ; weighting factor was S/N ratios of quantified signals).

T2DM had 23% and 20% lower Pi and γ -ATP than mCON, whereas mCON had comparable concentrations than recently published young healthy volunteers (yCON) (2)

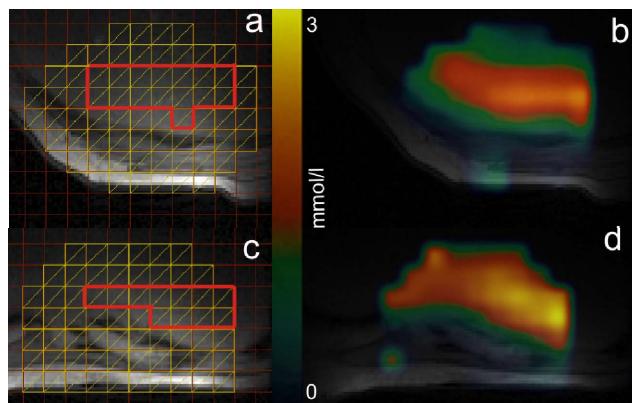


Fig.1 ^{31}P 3D MRSI of T2DM patient's liver (a,b) with γ -ATP mean concentration (c = 1.76 mmol/l) and healthy control (c,d) (c = 2.13 mmol/l). ^1H images (a,c) show selected voxels highlighted in yellow and voxels used for calculation of mean concentrations outlined by a red line, γ -ATP absolute concentration images (b,d) of voxels in the central slice selected according to (a and c). Note the same scale for both examples.

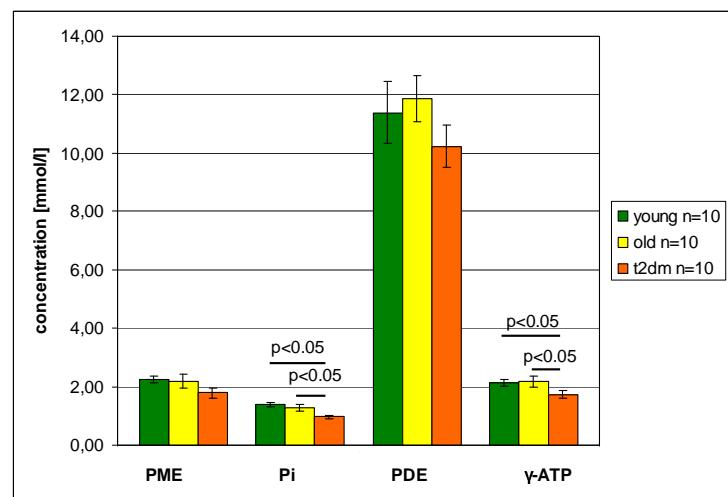


Fig.2 Mean concentrations of ^{31}P hepatic metabolites of young healthy controls* (yCON), T2DM patients and age and BMI-matched controls (mCON)

Table 1 Absolute values of ^{31}P metabolites in human liver (result in [mmol/l] \pm sem)

[mmol/l]	γ -ATP	Pi	PDE	PME
yCon*	2.14 ± 0.10	1.37 ± 0.07	11.40 ± 0.96	2.24 ± 0.10
mCon	2.17 ± 0.18	1.26 ± 0.12	11.87 ± 0.88	2.18 ± 0.26
T2DM	1.74 ± 0.11	0.96 ± 0.06	10.24 ± 0.74	1.79 ± 0.17

*young healthy volunteers (n=10 reproduced from (2))

References

- [1] Roden M. Nat Clin Pract Endocrinol 2006;2:335-348
- [2] Chmelik et al. MRM 2008;60:796-802
- [3] Chmelik et al. ESMRMB 2006
- [4] Naressi et al. Magn Reson Mater Phys 2001;12:141-152
- [5] A. I. Schmid et al. NMR Biomed. 2008;21:437-443