Quantification of Myocardial Oxygen Consumption Rate: Initial Experience in Humans

K. S. McCommis¹, D. Lesniak¹, T. A. Goldstein¹, P. K. Woodard¹, R. J. Gropler¹, and J. Zheng¹

¹Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States

Purpose

Myocardial oxygen supply and demand has to match to maintain normal myocardial contractility. Myocardial oxygen consumption (MVO₂), which determines the total myocardial oxygen demand, may provide accurate assessments of this balance in the heart. Recent studies in animals have shown the promise for the non-invasive quantification of MVO₂ by cardiac MR (CMR) techniques [1]. The purpose of this study is to assess the ability of our newly developed CMR methods to quantify regional myocardial MVO2 at rest and during pharmacologically-induced hyperemia in normal volunteers.

Methods

DB-TSE

TurboFLASH

Five volunteers without documented coronary artery disease were recruited (4M, age = 35 ± 4 old). All participants underwent CMR study at rest and then during adenosine vasodilation. This study Table 1. Imaging Sequence Parameters

50 sec

Echo# TEs (ms) Flip Angles Seg.# Scan Time 24,48,72 NA 3 16 sec BB-T2prep-GE 24,36,48,60,72 12° 31 20 sec

18°

was performed with a 1.5T Siemens Sonata system. Adenosine was infused intravenously for 6 minutes at a constant rate of 0.14 mg/kg/min by using a MR

compatible infusion system (Medrad

Continuum, Medrad, Indianola, PA). CMR methods include a dark-blood (DB) turbo-spin-echo (TSE) sequence and a bright-blood (BB) T2-prep-gradient-echo (T2-prep-GE) sequence for acquiring T2weighted images. Myocardial perfusion was measured using a turboFLASH sequence to collect 80-100 dynamic images. A bolus injection of 0.02 mmol/kg Multihance (Bracco Diagnostic, Princeton, NJ) was started 5 sec after the start of the perfusion measurement. T2-weighted imaging and dynamic perfusion imaging were performed at rest and during the adenosine injection. The volunteers were instructed to hold their breath during each imaging session. Table 1 lists the imaging parameters for

TR/TE=2/1.1

Global myocardial oxygen extraction fraction (OEF) at rest was determined in the coronary sinus using the T₂-prep-GE sequence. The quantification of OEF was different from a previously reported method [2]. A predefined relationship between OEF-blood T₂ was used to calculate OEF in the coronary sinus. Regional myocardial OEF during adenosine vasodilation was calculated by a two

Table 2. Volunteer Study Findings

	Rate-Pressure Product	MBF (ml/g/min)	MBV (ml/100g)	OEF (DB-TSE)	MVO ₂ (umol/g/min)
Rest	7576±1478	0.94±0.29	5.07±1.22	0.72±0.06	5.52±1.75
Adenosine	12244±2314	2.49±0.28	7.18±1.26	0.35±0.09	7.10±2.23

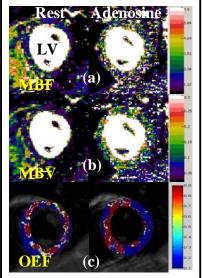
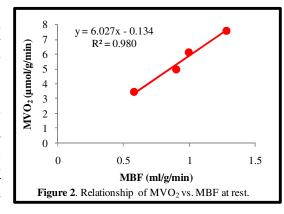



Figure 1. MBF (a), MBV (b), and OEF (c) maps, at rest and during the Adenosine Vasodilation

compartment model with hyperemic myocardial T2 (DB-TSE) or with hyperemic T2weighted signals (BB-T₂-prep-GE) [3]. Myocardial blood flow (MBF) and blood volume (MBV), both at rest and during pharmaceutical stress, were determined using a newly developed model-independent algorithm [4]. Global MVO2 was calculated by drawing an ROI on the MBF and OEF maps and using Fick's law: $MVO_2 \propto OEF \times MBF$. Figure 1 shows one set of images from one volunteer.

Results

MBF, MBV, and MVO₂ results can be seen in Table 2. As expected, injection of adenosine increased MBF 165% and MBV 41%. Myocardial OEF was reduced 102% and MVO₂ increased 29% with a concomitant increase in the rate-pressure product. MBF is linearly correlated with MVO₂ at rest ($R^2 = 0.98$) (Figure 2), but adenosine infusion disrupts this correlation ($R^2 = 0.33$), indicating a mismatch of myocardial perfusion and oxygen demand. No significant correlation was observed between MBV and MVO2, at rest or during adenosine vasodilation. In comparison, the BB-T₂-prep-GE method yielded a hyperemic OEF of 0.42 ± 0.09 and a hyperemic MVO₂ of $8.6 \pm 2.8 \, \mu \text{mol/g/min}$ (no

significant differences vs. the DB-TSE method). The sensitivity for 100% MBF increase with adenosine vasodilation is approximately 3.2% using the BOLD TSE sequence and 16% using the T₂-prep sequence.

Our CMR methods may non-invasively quantify myocardial perfusion and MVO₂. The BB-T₂-prep-GE method shows much higher sensitivity to the changes in MBF.

References

- McCommis KS, et al. Magn. Reson. Imaging, 200;26:11-9. 1.
- 2. Foltz WD, et al. Magn. Reson. Med, 1999; 42: 837-848.
- 3. Zheng J, et al. Magn Reson Med 2004;51:718-26.
- Goldstein TA, et al. Magn Reson Med, 2008; 59: 1394-1400. 4.