

In vivo Murine Cardiac PCr and ATP Concentrations Measured by Magnetic Resonance Imaging and Spectroscopy

A. gupta¹, V. P. Chacko², and R. G. Weiss³

¹Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States, ²Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States, ³Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States

SYNOPSIS: An *in vivo* ¹H MRI and ³¹P MR spectroscopic method is proposed and validated for the measurement of *in vivo* high energy phosphate metabolite (PCr and ATP) concentrations in normal (n=7) and thoracic aorta constriction (TAC) (n=10) mouse hearts. The *in vivo* MR results for [ATP] are in good agreement with those obtained using an *in vitro* luminescent assay on perchloric acid extracts of the same hearts.

INTRODUCTION: Normal energy phosphate metabolism is critical for cardiac function and viability^{1,2}. The combination of ³¹P magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) is uniquely able to assess the critical relationship between metabolism and function in the *in vivo* beating heart. ³¹P MRS/MRI studies in heart failure (HF) patients have documented reductions in the ratio of PCr/ATP, the concentrations of [ATP] and [PCr], and in ATP flux through the creatine kinase reaction^{3,4}. Mouse models of HF offer a novel, appealing means to investigate the mechanistic links between altered energy metabolism and function because they allow gene-targeted metabolic interventions and mimic energetic aspects of human HF⁵. Although PCr/ATP measures have been validated in the *in vivo* mouse heart^{5,6}, there have been no methods validated for measuring [ATP] or [PCr]. Thus there were two aims for this study. First, we sought to adapt human ³¹P MRS methods for quantifying [PCr] and [ATP]⁷ to the *in vivo* mouse heart and validate them by comparison with conventional invasive biochemical measures from a luminescent assay (LA). Second, we used the new ³¹P MRS method to test the hypothesis that *in vivo* myocardial [ATP] is reduced in the TAC model of murine HF.

MATERIALS AND METHODS: Experiments were carried out on a Bruker Biospec MRI/MRS spectrometer equipped with a 4.7T/40cm Oxford magnet and a 12cm (inner diameter) actively shielded gradient set, as previously described^{5,6}. Studies were first performed on mice then, on the same day, on an external phantom using comparable protocols. More specifically, *in vivo* MRI/MRS studies were carried out on 7 control and 10 mice four weeks after TAC (weight 28-33gm). Anesthesia was induced by ~1% isoflurane, as previously described⁶. The probe set included 22-mm ¹H MRI and 13-mm ³¹P MRS coils. MRI were obtained with ¹H MRI FLASH sequence (TE = 1.5ms, TR = 12ms, NEX = 12) and spatially-localized ³¹P MRS with a one-dimensional chemical shift imaging (1D SCI) sequence (16 mm F.O.V., 16 phase encoding steps, NEX = 64, TR = 2000ms) using modified BIR4 90° adiabatic pulses. After completing the MRI/MRS study, the mice were sacrificed and the hearts immediately frozen in liquid nitrogen and later extracted with perchloric acid for *in vitro* measurement of [PCr] and [ATP] with a luciferase enzyme LA⁸. An external phantom, consisting of a 5mm NMR tube filled with 0.15M phosphate solution (combination of 0.075M NaH₂PO₄ and 0.075M Na₂HPO₄) and 40μM NiCl₂ was positioned at the center of the ³¹P surface coil, like the mouse hearts, and studied with the same MRI/MRS protocol, except that NEX = 2, TR = 8000ms. ¹H MR Images were analyzed with Paravision software and ³¹P MR spectra peak areas determined with in-house custom software.

To calculate cardiac metabolite concentrations we first measured T1-dependent correction factors (C_t) for fully relaxed conditions by comparison of acquisitions with different TR = 2, 4, 8, 10, 12 sec for PCr and ATP separately. The concentration of metabolite [C_c], in one slice of a ³¹P 1D CSI cardiac data set is given by following formula:

$$C_c = \frac{S_c \times C_p \times V_p \times NEX_p \times RG_p}{S_p \times V_c \times NEX_c \times C_f \times RG_c}$$

where S_p and S_c are the signal intensities of phantom and cardiac metabolites, respectively, C_p and C_c are the concentration of the phantom and cardiac metabolites, V_p and V_c are the volumes of phantom and cardiac muscle in the same slice, NEX_p and NEX_c are the number of acquisitions for each phantom and cardiac study, C_f is the saturation correction factor, and RG_p and RG_c are the receiver gains for phantom and cardiac studies respectively.

RESULTS: Representative images and spatially-localized ³¹P spectra are shown for the mouse (Fig.1) and the phantom (Fig.2). The results of the ³¹P MRS and LA methods are summarized in Table 1. The mean *in vivo* [PCr] and [ATP] of roughly 10 and 5 μmol/g, respectively, agree with prior *in vitro* measures⁹. Critically, there is no significant difference in [ATP] determined by MRS and LA (p=ns). [PCr] is significantly higher by MRS (p<0.006) but this is likely due to the well recognized rapid degradation of PCr during sacrifice. [PCr] is significantly decreased in TAC mice as compared to controls by both MRS (p<0.001) as well as LA (p< 0.0002). [ATP] is significantly decreased in TAC mice by MRS (p<0.03) as well as LA (p<0.03).

DISCUSSION: We present a novel, convenient, and accurate method of measuring cardiac ³¹P metabolite concentrations in the *in vivo* mouse heart from 1D CSI ³¹P MRS spectra. Our [ATP] results are consistent with the literature⁹ and with conventional measures. This new MRS method does not add significantly to the time of an anesthetized mouse study. Although these are tissue rather than intracellular concentrations, tissue measures are obtained in human heart and are used, in part, to calculate ATP flux through the creatine kinase reaction. Cardiac creatine kinase [ATP] is reduced after TAC in the *in vivo* mouse heart.

REFERENCES:

1. Ingwall J.S. et al *Circulation Research* 95, 135-145 (2004); 2. Neubauer S. *N Engl J Med* 356, 1140-1151 (2007); 3. Hardy C.J. et al, *Am Heart J.* 122, 795-801 (1991); 4. Smith CS, et al *Circulation* 114, 1151-1158 (2006); 5. Maslov M. et al, *Am J Physiol* 292, H387-H392 (2007); 6. Chacko V. P. et al, *Am J Physiol* 279, 2218-2224 (2000); 7. Bottomley PA et al *Mag. Res. Med.* 35, 664-670 (1996); 8. Ronner P., et al *Anal. Biochem.* 275, 208-216 (1999); 9. Walter F. and Seth. H. *J. Chroma.* 578, 39-44 (1992).

Table 1. PCr and ATP concentrations obtained (μmol/g wet wt.) by MRS and LA method (Mean ± S.D.)

Metabolites	MRS method		Enzyme luminescent assay	
	Control	TAC	Control	TAC
[PCr]	10.4 ± 1.4	6.7 ± 2.0	8.1 ± 0.7	5.0 ± 1.3
[ATP]	4.99 ± 0.9	4.0 ± 0.8	4.3 ± 0.7	3.3 ± 0.8

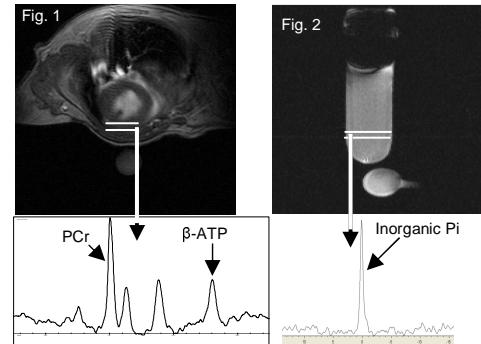


Fig. 1: Axial ¹H MRI of mouse (top) at the left ventricle (LV) and corresponding cardiac ³¹P spectrum (bottom).

Fig. 2: ¹H MRI of phantom containing inorganic phosphate (top) and corresponding ³¹P spectrum (bottom).