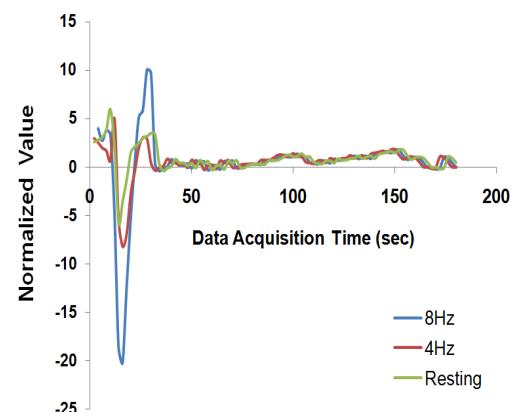


Frequency-Dependent Cerebral Blood Flow-Volume Coupling in Activated Human Visual Cortex

A-L. Lin¹, and P. T. Fox¹

¹Research Imaging Center, University of Texas Health Science Center, San Antonio, TX, United States

Introduction Neuronal activations elicit responses in cerebral blood flow (CBF) and volume (CBV). The coupling between relative changes in CBF (rCBF (%)) and CBV (rCBV (%)) has attracted intense interest in the fields of neuroscience and metabolic physiology due to its importance for understanding neurovascular coupling mechanisms, blood oxygenation level-dependent (BOLD) signals and oxygen metabolism determination (1, 2). Nonetheless, it remains unclear that whether the coupling persists unchanged, i.e., with a fixed power law constant $\alpha = 0.38$ (Eq. [1]), or varies with brain activities. Using functional magnetic resonance imaging (fMRI), the flow-volume coupling during differing levels of brain activations has been extensively studied in animal models (3,4), where it appears that the α is neuronal-activity dependent. In humans, however, the flow-volume coupling was predominately investigated and reported using positron emission tomography (PET) (1,5). The purpose of this study was, therefore, to verify the flow-volume coupling during graded visual stimulation with fMRI methods.


$$(1 + rCBV) = (1 + rCBF)^\alpha \quad [1]$$

Material and Methods Five males (aged 20-34) participated the study. A black-white checkerboard was employed for visual stimulation. The experimental design consisted of 3-min 4Hz/3-min off/3-min 8Hz. fMRI studies were performed on a 3T Trio MRI scanner (Siemens, Erlangen, Germany). An intravenous line was inserted for Gd-DTPA contrast agent administration. An eight-channel phase array coil was used. Four slices (5 mm in thickness) encompassing the primary visual cortex were chosen for functional imaging. Images were acquired with a field-of-view (FOV) of 24 cm and in-plane matrix size of 64 x 64. rCBF(%) was determined using pulsed arterial spin labeling (PASL) techniques, with TR/TE/TI₁/TI₂ = 2000 ms/19 ms/700 ms/1000 ms (6). rCBV(%) was determined using 0.1 mmol/kg Gd-DTPA contrast agent (Omniscan, GE Healthcare, USA) per condition with the gradient echo EPI (echo planar imaging) sequence: TR/TE = 2000 ms/30 ms. **Data Analysis** The ASL image series were obtained by subtracting the adjacent slab-selective and nonselective images in the sequence. The voxels that passed through the threshold (Student t test, $P < 0.005$) were used to determine rCBF. Changes in brain signal intensity occurring during cerebral transit of the high magnetic susceptibility Gd-DTPA were converted to contrast agent concentration-time curves. The area under the concentration-time curve is proportional to the local rCBV. These calculations were performed on a voxel-by-voxel basis to generate images of rCBV (7). Those passed through the threshold ($P < 0.005$) and had common area with rCBF were used to calculate the α values.

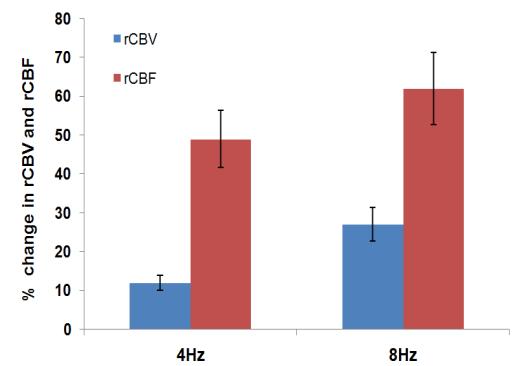

Results and Discussion Figure 1 displays the Gd-DTPA intensity changes in a single voxel which passed through the threshold within the visual cortex in a single subject. The magnitudes of rCBF(%) and rCBV(%) averaged over the five subjects are shown in Figure 2 and Table 1. Both rCBF and rCBV were higher at 8 Hz than at 4 Hz. The α values were then calculated with Eq. [1]. As shown in Table 1, α varies with stimulus frequency with $\alpha = 0.28$ and 0.50 at 4 and 8 Hz, respectively. The result is in good agreement with a previous PET study with a similar visual stimulus design ($\alpha = 0.37$ -0.64), though $\alpha = 0.3$ was demonstrated in the paper with the mixture of all three conditions, i.e., resting, 2 and 8 Hz with quantitative values (5). The results suggest that the flow-volume coupling is not constant, but varies with stimuli and brain activity, and the calculation of cerebral metabolic rate of oxygen (CMRO₂) cannot depend on the assumption of $\alpha=0.38$ for all stimuli. The frequency-dependent flow-volume coupling would facilitate our future understanding of BOLD and CMRO₂ mechanisms.

Table 1

Stimulus Rate	Imaging Method	rCBV (%)	rCBF (%)	α
4Hz	fMRI	12 ± 3	49 ± 10	0.28
8Hz	fMRI	27 ± 5	62 ± 12	0.50
2Hz	PET(5)	10 ± 13	16 ± 16	0.64
8Hz	PET(5)	21 ± 5	68 ± 20	0.37

Figure 1 Time course of changes in signal intensity at each condition in a single voxel (ROI) during the first-pass transits of intravenously administered Gd-DTPA contrast agent.

Figure 2 Changes in rCBF and rCBV at 4 and 8 Hz

References: (1) Grubb, Stroke 1974, 5:630-639; (2) Davis, PNAS 1998, 95:1834-1839; (3) Kida, JCBFM 2007, 27:690-696; (4) Jin, Neuroimage 2008, in press; (5) Ito, JCBFM 2001, 21:608-612; (6) Wang, MRM 2003, 49:796-802; (7) Belliveau, Science 1991, 254:716-719.