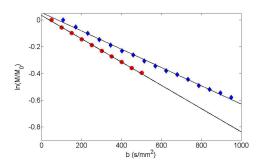
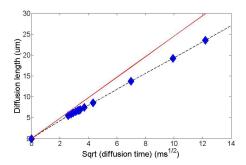
TIME-DEPENDENT DIFFUSION MRI IN THE NEOCORTEX OF AQUAPORIN-4 DEFICIENT AND NORMAL MICE IN THE RESTING STATE AT 7T

T. Pavlin¹, C. Brekken¹, P. E. Goa², A. Thoren³, O. P. Ottersen³, E. A. Nagelhus³, and A. Håberg¹

¹Circulation and Medical Imaging, NTNU, Trondheim, Norway, ²Medical Imaging, St.Olavs Hospital HF, Trondheim, Norway, ³University of Oslo, Oslo, Norway


Introduction

The goal of this work is to investigate whether and how non-invasive MRI methods can contribute to studying the role of Aquaporin-4 in water transport in the brain. Aquaporin 4 (AQP-4) is the predominant water channel protein in the neocortex and cerebellum. It is concentrated in the astrocyte end-feet membranes, adjacent to blood vessels to facilitate fast, selective and activity dependent water efflux from cortex to subarachnoidal space through the end-feet membranes [1]. We use time-dependent diffusion MRI to investigate how complete depletion of AQP-4 effects water transport in the mice brain. We focus on measurements during the resting state, which will serve as a reference for future work using fMRI.


Materials and Methods

Animal: All experiments were approved by the Institutional Animal Care and Use Committee and conform to National Institutes of Health guidelines. Studies were conducted with 16 (male and female) C57B16 mice: 8 AQP-4 knockouts and 8 wild-type littermates of AQP-4 knockouts as controls. Animals were laid prone head first in the magnet, heated by a circulating water bed to keep at constant temperature. Anesthesia consisted of inhalation gas 67.5% N2/32.5% O2 + 1.5-3% isofluran. MRI: Experiments were performed on 7T Bruker Biospec 70/20 AS with BGA-12 400mT/m gradient unit, a 72mm volume resonator for transmit and an actively decoupled mouse brain quadrature surface coil for receive-only. The MRI protocol consisted of scout scans, localized shimming using Fastmap, single-shot EPI acquisition for optimization of EPI parameters, and DTI_EPI using pulsed gradient spin-echo (PGSE) and stimulated-echo (PGSTE). Diffusion parameters for PGSE: 3 diffusion directions, 10 *b* values from 50 to 500 s/mm² (not including imaging gradients), δ =4 ms, Δ =8, 9, 10, 11, 12 ms. Diffusion parameters for PGSTE: 3 diffusion directions, 16 *b* values from 50 to 800 s/mm², δ =4 ms, Δ =12.5, 13, 15, 20, 50, 100, 150 ms. Other imaging parameters: TE/TR=26.15 ms/2000 ms, NEX=1, aquisition time=1 m 38s (max), BW=25 kHz, FOV=20x20 mm², Matrix=84x60, 2 mm slice thickness.

Results

7.5 - 6.5 -

Figure 1 Monoexponential signal decay as a function of *b*-value for two diffusion times, t_D , 6.67 ms (circles) and 148.67 ms (diamonds) in the AQP=4 knockout mouse brain. Figure clearly shows a single diffusion component which is time-dependent (see discussion).

Figure 2 Apparent diffusion coefficient (obtained from slopes such as in Figure 1) as a function of square root of diffusion time for normal (triangles) and AQP-4 deficient (circles) mouse brain. Fitting a straight line to short-time diffusion limit we can extract the 'bulk' diffusion coefficient D_0 [2]. Similarly, fitting an asymptote to the long-time diffusion data one can obtain the tortuosity (T) of the tissue since $\lim_{t\to\infty} D(t)/D_0 = 1/T$ [2].

Figure 3 Diffusion distance as a function of diffusion time using the Einstein diffusion equation, $\operatorname{sqrt}(6Dt_D)$, and using apparent diffusion coefficients from Figure 2. We see from this plot that the diffusion component deviates from linearity (solid line) and is thus slightly restricted.

Discussion and Conclusions

Short and long diffusion-time limits give respectively the bulk, unrestricted diffusion coefficient D_0 =1x10⁻⁵ cm²/s and the tortuosity T=1.6. D_0 may appear to be low in our study, compared to bulk diffusion coefficient of water at 37°C (3.0 · 10⁻⁵ cm²/s). However, diffusion in cytoplasm is strongly influenced by proteins and macromolecules, while water in the extracellular space can be partly structured due to interactions with proteins [3], reducing the inherent value of D_0 . The monoexponential signal decay for all diffusion times might also seem unusual at first in light of previous findings [4]. However, since we are in the low q-regime we are sensitive to displacements in the range between 20 μ m and 80 μ m, which is several orders more than the cell dimension and other smaller structures [2]. The tortuosity value depends partly on the permeability of the membranes, while diffusion behavior at short t_D is sensitive to molecules being close to restricting surfaces. However, within the precision of our measurements we did not observe any differences in time-dependent diffusion between the AQP-4 knockouts and controls in the non-activated state. This is not unexpected, since the AQP-4 channels, and thus the permeability of the membranes, are only expected to be active when osmotic gradients are present across the membranes [5]. Future studies in the activated state need to be performed to see whether time-dependent diffusion could phenotype AQP-4 deficient mice.

Reference

[1] M Amiry-Moghaddam, et al., *Neuroscience*, **129**, 999, (2004). [3] D. Le Bihan, *Phys Med Biol*, **52**, R57, (2007). [5] M Parisi et al., *J Biol Phys* **33**, 331, (2008) [2] K. G. Helmer et al., *NMR Biomed*, **8**, 297, (1995). [4] J Pfeuffer et al., *NMR Biomed*, **11**, 19, (1998).