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Introduction: Diffusion tensor imaging (DTI) is becoming increasingly important in clinical studies of diseases such as multiple sclerosis and schizophrenia, and 
also in investigating brain connectivity. Hence, there is a growing need to process diffusion tensor (DT) images within a statistical framework based on appropriate 
mathematical metrics. However, the usual Euclidean operations are often unsatisfactory for diffusion tensors due to the symmetric, positive-definiteness property. 
A DT is a type of covariance matrix and non-Euclidean metrics have been adapted naturally for DTI processing [1]. In this paper, Procrustes analysis has been used 
to define a weighted mean of diffusion tensors that provides a suitable average of a sample of tensors. For comparison, six geodesic paths between a pair of 
diffusion tensors are plotted using the Euclidean as well as various non-Euclidean distances. We also propose a new measure of anisotropy -Procrustes anisotropy 
(PA). Fractional anisotropy (FA) and PA maps from an interpolated and smoothed diffusion tensor field from a healthy human brain are shown as an application of 
the Procrustes method. 
 

Theory: Procrustes analysis is a statistical method to estimate the mean of a set of shapes [2]. Consider N diffusion tensors D1, …, DN. To ensure the positive 
definite property of Di, we use a new parameterisation, i.e. Di=Qi Qi

T, where Qi is a general 3x3 matrix in the real space. The weighted Procrustes sum of squares is 
defined as 
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where ||X||=[trace(XTX)]1/2 is the Euclidean norm, weights wi ≥ 0 are proportional to a decreasing function of distance between voxels and Ri are orthogonal 
matrices. Note that Qi and QiRi result in the same model, i.e. Di=QiQi

T=(QiRi)(QiRi)
T. Let QP=∑wiQiRi
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* are the solution of Eq.(1), i=1,…,N. Then the 
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We can also define a scaled distance function - the full Procrustes distance between two tensors:
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β= −  whereβ>0 is a scalar. By computing 

the full Procrustes distance between a diffusion tensor and isotropy, we can derive a new measure of anisotropy called the Procrustes anisotropy (PA): 
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Note that 0 ≤ PA ≤ 1 with PA=0 indicating isotropy and PA≈1 indicating strong anisotropy.  
Applying the Procrustes method to DT data processing, we consider smoothing and interpolation. To smooth a diffusion tensor Dk at voxel Vk =(xk , yk , zk) 

from a DT dataset ΩD, we calculate the weighted Procrustes mean 1( , ,  ,   ) P k k kMD D Dμ
∧

… where Dki are the neighbours of Dk, i.e. Dki∈ΩD and Euclidean distance 

between voxels Vk and Vki is dE(Vk ,Vki)=|| Vk - Vki ||
2 
≤ a and a ≥ 0. The interpolation of D1, …, DN can be obtained by calculating 1( , , )P ND Dμ

∧
… , and is allocated in a 

subvoxel SV=(x,y,z). To consider the contribution of an individual diffusion tensor at the voxel, we let wi be proportional to a function of dE. E.g., for computing 
the smooth of Dk, we define w0, w1, …, wM corresponding to Dk, Dk1, …, DkM as wi is proportional to exp{-AdE

2(Vk ,Vki) } where A > 0, i.e., exponential weights. 
 

Results: Consider interpolations between two diffusion tensors with different metrics. Fig.1 shows six geodesic paths between two tensors (in red) differing in 
orientation. The Euclidean metric is problematic (see Fig.1 a) due to swelling of the volume[3]. In this study, geodesic paths using Procrustes and Root-Euclidean 
metrics are similar (Fig.1 c and f)., and there is not a large difference between the Riemannian [4] and Log-Euclidean [3] paths (Fig.1 d and e). Fig.1 b is the 
geodesic path using the Cholesky metric which smoothes out the swing between 3rd and 4th ellipsoids here. 

We apply Procrustes analysis to process a set of diffusion MR images from a healthy human brain. The diffusion MR images were acquired using a spin echo 
EPI (echo planar imaging) sequence with diffusion weighting gradients applied with a weighting factor of b=1000 s/mm2. A total of 52 interleaved contiguous 
transaxial slices were acquired throughout the subject’s head in a matrix of 112x112 (interpolated to 224x224) with an acquisition voxel size of 1x1x2 mm. For 
each slice, the acquisition was repeated to acquire diffusion weighted images in 32 non-collinear gradient directions, as well as one acquisition with no diffusion 
weighting.  

The DT model is fitted with a Bayesian method [5], and Fig.2 a shows the FA map. We smooth and interpolate (with 2 interpolations between each pair of 
original voxels) the DT data, and calculate the FA and PA maps shown in Fig.2 b and c. Obviously, FA and PA maps from the processed DT data are much 
smoother than the one without processing. Fig.2 a1, b1 and c1 are zoomed ROI from Fig.2 a, b and c respectively. The feature that the cingulum (cg) is distinct 
from the corpus callosum (cc) is clearer in the anisotropy maps from the processed data in Fig.2 b1 and c1 than that in Fig.2 a1. All computations presented in this 
paper are programmed with MATLAB (The Mathworks, Inc., R2008a.). 

                
 

 
             

 
Discussion: In this paper, we have interpolated the DT data with non-Euclidean metrics, and applied Procrustes analysis to study the anisotropy of diffusion in the 
human brain. Processing multiple tensors is a challenging application which would consider the contributions from different components at a voxel. Another futher 
application is to use the interpolated data for fibre tractograpy which provides an approriate method for investigating the structure of the human brain. 
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Fig.1 Geodesic paths between two tensors (in red) with 
Euclidean (a), Cholesky (b), Procrustes (c), Riemannian 
(d), Log-Euclidean (e) and root-Euclidean (f) 

Fig. 2 a, b: FA maps from original and processed DT 
data, c: PA maps from processed data. a1, b1 and c1: 
zoomed region from a, b and c  
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