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Introduction.  An important issue in Diffusion Tensor Imaging (DTI) is the use of a well-chosen gradient encoding scheme. Many approaches have 
previously dealt with simulation-based and experiment-based comparisons of encoding schemes that minimise the orientational dependence of the 
reliability of DTI. The most established gradient schemes to maximise SNR and minimise directional dependent bias and variations are the Jones 
schemes. These are based on iterative, time-consuming, numerical computations of minimal electrostatic repulsive forces between point charges on a 
unit sphere. Furthermore, the schemes are not exactly reproducible since they are based on a random initialisation. In order to obtain a flexible direction 
scheme method with the benefits of the Jones schemes, a simple geometrical scheme has been developed here. The method is very easy to implement 
and mimics the Jones distributions successfully. 

Construction – Method.  In contrast to distributing points on a circle equidistantly, distributing many points on a sphere is 
a highly non-trivial undertaking [4]. A strong simplification is applied here by reducing the 3D problem to the trivial 2D case. 
The resulting deviation from the optimal distribution is an acceptable loss, in comparison to experimental imperfections, 
and is later shown to be negligible. Point symmetry to the origin is naturally given by populating only one half of a sphere 
with points and subsequently reflecting replicas through the origin. The whole sphere is divided into regular slices by a 
constant zenith angle increment. Similarly, the resulting circumferences of the upper hemisphere can be divided 
equidistantly using constant azimuthal angle increments for each slice, respectively. Since the circumference increases by 
sin(θ) (from the north pole at θ=0 to the equator at θ=π/2), the number of points 
distributed equidistantly on a circumference at an arbitrary θ>0 must be equal to 
2Nsin(θ), where N is the number of predefined slices. Obviously, this equation 
can only be exact for the equator. For all other cases the number of points per 
slice must be rounded. This leads to certain total numbers of directions, i.e. 1, 3, 
6, 11, 17, 23, 32, etc. Implementation of a few additional rules enables one to 
obtain arbitrary numbers: an expression for the number of zenith angles at a 
predefined total number of gradient directions is derived, N=√[(Ntotal-1+π/2)π/2], 
which is then rounded and used as a starting point for constructing the scheme. 
The resulting total number is then compared to the predefined total number. 

Missing directions are added or surplus directions are subtracted in a way that accounts for the most uniform 
distribution. Most appropriately, the developed gradient schemes are entitled DISCOBALL schemes (DIrection 
SCheme Obtained By ALigning  points on Latitudes). Figure 1 shows a Discoball30 scheme as an example. 

Analysis – Method.  Following the method by Skare et al. 
proposed in 2000 [5], adopted by Jones in 2004 [2] and 
Landmann et al. in 2007 [3], Monte Carlo simulations were 
performed using MATLAB including 10,000 repetitions of 
diffusion tensor estimations from noisy measurements 
(SNR=10.6) with 220 differently orientated, cigar shaped 
diffusion tensors, each possessing four different degrees of 
anisotropy (FA=0, 0.13, 0.71, 0.89). Analysing several 
encoding schemes concerning FA variation, Skare's results 
were reproduced for the Tetrahedral, the widely used 
effective Icosahedral6, and the Jones30 scheme, which was 
used by Skare and Landmann [5,3]. A direct comparison of 
Jones30 and Discoball30 scheme is presented here to 
demonstrate the equality of both schemes. 
Results.  Although not depicted here, comparison of 
Coulomb forces between the point charges of DISCOBALL 
schemes and of the Jones schemes for a range of Ntotal = 1 to 
64 indicates that DISCOBALL schemes perform almost as 
well as the optimal Jones schemes. Table 1 puts the 
DISCOBALL schemes into context with the commonly used 
schemes. Concerning their resulting condition numbers, the 
Jones and DISCOBALL schemes perform similarly. Figure 2 
compares the mean standard deviations over all Monte Carlo 
repetitions vs. tensor orientation. Additional averaging over all 
tensor orientations yields a measure for the overall accuracy 
of the scheme. The corresponding standard deviation indicates the accuracy fluctuation over all tensor 
orientations. Both are also listed in table 1. The box-whisker-plot in figure 3 provides a similar 
comparison of the mean standard deviation. 

 
Conclusion.  The proposed DISCOBALL gradient encoding schemes perform as well as the computationally demanding Jones schemes. The approach 
for arbitrary numbers is fast, unique, and well-suited for direct implementation into the MRI sequences instead of using look-up tables. 
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Figure 1: Discoball30 
scheme. Different markers 
indicate the direction of the 
corresponding gradients. 

Scheme # cond <σ(FA)> ± std

Tetrahedral* 6 9.15 0.0613 ± 9.6%

Eff. dual-gradient* 6 2.00 0.0356 ± 2.7%

Eff. Icosahedral6* 6 1.58 0.03447 ± 3.1%

Jones30 30 1.59 0.03453 ± 1.0%

Discoball30 30 1.60 0.03450 ± 1.0%

Jones60 60 1.58 0.02999 ± 0.7%

Discoball60 60 1.58 0.02999 ± 0.6%

Table 1: Condition number and averaged standard 
deviation as a measure of mathematical quality and 
experimental accuracy for several encoding 
schemes (*: 5 replicas for a total of 30).  

Figure 2: Standard deviation of FA over 
all repetitions averaged over all FA's. 
Vertical lines indicate the gradient 
directions. Top: eff. Icosahedral6 (x5), 
Centre: Jones30, Bottom: Discoball30. 

Figure 3: Box-whisker-plot summarising the 
distribution of the mean standard deviation (red 
crosses: outliers) 
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