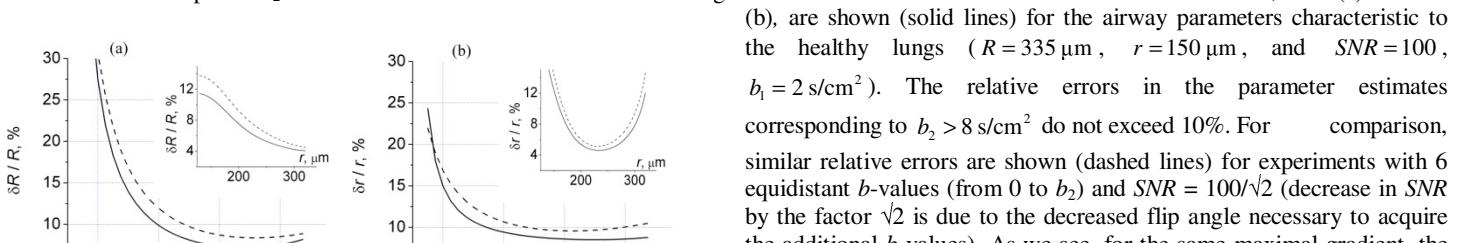


Optimal strategy for b-values selection for lung morphometry with hyperpolarized 3He diffusion MRI

A. L. Sukstanskii¹, J. D. Quirk¹, M. S. Conradi², and D. A. Yablonskiy^{1,2}


¹Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, United States, ²Physics, Washington University, St. Louis, Missouri, United States

Introduction: The lung morphometry technique [1] allows the evaluation of lung microstructure based on an MRI measurement of hyperpolarized ³He gas diffusion. In this approach, acinar lung airways are considered as cylinders covered by alveolar sleeves [2]. Diffusion of ³He gas in each airway is anisotropic and described by distinct longitudinal and transverse diffusion coefficients, D_L and D_T . An analytical expression for the diffusion MR signal as a function of b -value was derived taking into account the fact that airways with a flat distribution across all orientations are present in each imaging voxel. In [3], the relationships between D_L and D_T and geometrical parameters of alveolar airways – external, R , and internal, r , radii – were found. This approach allows estimation of R and r from multi b -value MR experiments [1,3]. An important practical question is how to optimize experimental sequence parameters for a given restricted imaging time (usually about 10-second breathhold). Herein we provide estimates of the values of the optimal b -values that allow evaluation of lung geometrical parameters with minimal errors.

Theory: Previously we have developed a theory of parameters optimization assuming an equidistant data sampling [4]. Here we generalize this theory for non-equidistant sampling. We use Bayesian analysis [4-6] to analyze how the estimated geometrical parameters R and r depend on their “true values”, signal-to-noise ratio, data sampling and total number of data values N . The basic quantity in Bayesian analysis is a joint posterior probability $P(\{p_j\}|Data, \sigma, I)$ for model parameters $\{p_j\}$ given all of the data $Data$, the noise standard deviation σ , and the prior information I . In

the high signal-to-noise approximation $P(\{p_j\}|Data, \sigma, I) \propto \exp(-Q/2\sigma^2)$, where $Q = \sum_{n=0}^{N-1} [\hat{S}(b_n) - S(b_n)]^2$. Here $S(b_n)$ depends on the model’s parameters to be estimated: $S(b_n) = S_0 \exp(-bD_T) \operatorname{erf}(\sqrt{b(D_L - D_T)}) / \sqrt{4b(D_L - D_T) / \pi}$, where D_L and D_T are functions of airways geometrical parameters R and r and b -value [3]. Function $\hat{S}(b_n)$ is determined from $S(b_n)$ by substitution of the parameters $p_i = \{r, R, S_0\}$ with their “true” values \hat{p}_i . To estimate any parameter in the model, a posterior probability for the parameter should be calculated, from which the estimated values of the parameters can be found in the form: $(p_j)_{est} = \hat{p}_j \pm \delta p_j$, $\delta p_j = SNR^{-1} \cdot (\Delta_j / \Delta)^{1/2}$, where δp_j are the expected uncertainties of the estimated parameters, $SNR = \sigma/S_0$ is the signal-to-noise ratio; Δ and Δ_j are the determinant and the j^{th} minor of the matrix \mathbf{A} with the rank M equal to the number of the model parameters. Matrix elements are: $A_{ij} = \sum_{n=0}^{N-1} S_i(b_n) S_j(b_n)$, where $S_i = \partial S / \partial p_i$ calculated at $p_i = \hat{p}_i$. For the model of ³He gas diffusion in lung acinar airways, developed in [1,3], the signal S as a function of the b -value depends on three parameters: the signal amplitude S_0 and two geometrical parameters of the airways – R and r . Hence, the minimum number of b -values is three. As expected, the optimal $b_0 = 0$; the two other b -values will be denoted as b_1 and b_2 .

Results and Discussion: The optimal set of b -values, resulting in the best parameter estimates, corresponds to the minimum of δp_j with respect to b_1 and b_2 . Our analysis demonstrates that for typical values of R and r characteristic to human lungs, the optimal b_1 lays in a narrow interval 1.5 – 2.5 s/cm², whereas the optimal b_2 is rather high and lays in the interval 12 – 20 s/cm². Such high b -values require strong diffusion-sensitizing gradients which are not always available and assumes a sufficiently high SNR to accurately measure the strongly-attenuated signal at these b -values. Fortunately, the minima of b_2 -dependence are rather shallow and, therefore, practically the same quality of the parameter estimates can be achieved with smaller than optimal b_2 values. This statement is illustrated in the Figure below where the relative errors of the radii estimates, $\delta R/R$ (a) and $\delta r/r$ (b), are shown (solid lines) for the airway parameters characteristic to the healthy lungs ($R = 335 \mu\text{m}$, $r = 150 \mu\text{m}$, and $SNR = 100$, $b_1 = 2 \text{ s/cm}^2$). The relative errors in the parameter estimates corresponding to $b_2 > 8 \text{ s/cm}^2$ do not exceed 10%. For comparison, similar relative errors are shown (dashed lines) for experiments with 6 equidistant b -values (from 0 to b_2) and $SNR = 100/\sqrt{2}$ (decrease in SNR by the factor $\sqrt{2}$ is due to the decreased flip angle necessary to acquire the additional b -values). As we see, for the same maximal gradient, the 3 b -value pulse sequence with non-equidistant optimized b -values result in smaller uncertainties of the estimated parameters than 6 b -value pulse sequence.

The results shown in Figure correspond to the airways’ geometrical parameters characteristic to the healthy lungs. In mild emphysema the external airway radius R slightly increases whereas the internal radius r increases substantially. The insets in Figure illustrate the dependence of the relative errors on the internal radius r for a fixed $R = 350 \mu\text{m}$, and $b_1 = 2 \text{ s/cm}^2$, $b_2 = 8 \text{ s/cm}^2$. The relative error of the external radius R monotonically decreases, whereas that of the internal radius r has a minimum at $r = 230 \mu\text{m}$. The 3 b -value pulse sequence provides more precise parameter estimates over the range of parameter values tested.

Conclusion: In the range of the airway geometrical parameters corresponding to healthy lungs and lungs with initial stages of emphysema, the optimized 3 b -value pulse sequence results in the relative errors in the parameter estimate 10% smaller than that can be achieved by means of a substantially longer 6 b -value pulse sequence with equidistant sampling [4]. This reduced imaging time can be harnessed to decrease the duration of breath-hold or to increase the number of acquired slices.

1. Yablonskiy DA, et al, PNAS 2002; 99: 3111-3116. 2. Haefeli-Bleuer, B, Weibel, ER, Anat Rec 1988; 220: 401-414. 3. Sukstanskii AL, Yablonskiy, DA, JMR 2008; 190: 200-210. 4. Sukstanskii AL, et al, JMR 2007; 184: 62-71. 5. G. L. Bretthorst, *Bayesian Spectrum Analysis and Parameters Estimation* (Springer-Verlag, NY, 1988). 6. G. L. Bretthorst, Concepts Magn. Reson. 2005; 27A: 73.